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FOREWORD

This is a summary report on the work performed under the

subject study program from June 1962 to February 1964. The

one-dimenslonal analysis was performed by G. P. Kooyers, while

the two-dimensional analysis was performed by R. P. Wadhwa.

Professor 0. Buneman acted as a consultant throughout the

program and made several significant contributions. Mr. R.

Hockney also acted as a consultant and made significant contribu-

tions towards the solution of Poisson's equation in the two-

dimensional analysis. Mr. D. F. Brauch and Miss P. A. Vartanian

contributed towards programming on the high speed digital com-

puter. This work was completed under the supervision of Dr.

S. P. Yu, who also made several helpful suggestions.
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OBJECTIVE

The objective of the work to be performed

under this contract is the study of the transient

and oscillatory phenomena in an ion beam into which

electrons are injected for the purpose of neutral-

ization. The studies are aimed at obtaining a

more complete understanding of the ion-electron

mixing process as it applies to ion-beam engines,

with specific attention being given to factors

which might affect the performance of such an ion

engine.
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ABSTRACT q'_

Electron-ion mixing is studied in one- and two-dimens_onal

configurations with the use of a high speed digital computer.

These studies are important for optimizing the electron emission

required for adequate space-charge neutralization of ion beams

for ion-engine applications, lons are injected across the accel

grid at constant velocity while electrons are emitted at the

decel plane with Maxwellian velocity distribution. Finite dimen-
sions for the ion beam and electron emitter are considered for the

two-dimensional configuration. The mathematical formulations in

both the cases are normalized in a convenient manner, and the

charged particles are updated at every unit-time interval accord-

ing to self-consistent space-charge and dc fields evaluated by

superfast methods. Poisson's equation is solved by using Green's

method in the one-dimensional configuration and by using the
Fourier analysis and "marching method" in the two-dimensional

configuration. For the two-dimensional case, both the ideal

(transparent) and actual cases of decel grid are investigated.

Several values of ion-electron mass ratio, emission, velocity,

and electron emitter temperature are studied. The ship potential
and thrust are calculated in each case.

_._//¢The results of the two formulations indicate that an ion in-

_/_tability may be caused waen the number of electrons is in-
"sufficient, although the results of the two-dimensional form-
ulation seem to indicate that a smaller number of electrons is

needed for space-charge neutralization. Such an instability
causes deterioration in both thrust and ship potential. For the

two-dimensional configuration, the transverse ion-beam spread

is found to be inversely proportioned to ion mass. There is an

adequate space-charge neutralization in the vicinity of the

decel grid; the ion-beam seems to be well compressed, except

for some residual space-charge. The fluctuations in thrust and
ship potential seem to be decreased as the ion mass is increased.

The electrons seem to follow the ions very closely, and the

average exit velocity of electrons is almost equal to that of
the ions.

For the case of an aperture in the two-dlmensional con-

figuration, the equlpotentials are significantly changed, and

almost all the electrons are directed towards the ion beam,
resulting in higher space-charge neutralization of the ion

beam. Poisson's equation, in this case, is solved by modifying
the marching method and using capacitance matrix.
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ANALYSIS OF ELECTRON-ION MIXING IN I0N ENGINES

by R. P. Wadhwa and G. Kooyers

Litton Industries

Io HISTORICAL SUMMARY OF THE ELECTRON-ION MIXING PROBLEMS

The subject of neutralization has been approached

with a wide range of attitudes, resulting in varying de-

grees of optimism and pessimism.

Instinctively, one feels that the heavy ions will

always pull along the requisite number of electrons,

provided they are made available from some source placed

in or near the beam. Any charge imbalance will result in

electrostatic fields which redistribute electrons in such

a way as to restore neutrality. Indeed, it would appear

that this mechanism is not dependent on collisions for

its operation, and the scarcity of collisions cannot be

invoked against our "instinctive" confidence in successful

neutralization•

However, several analytical studies have been made

of the problem of collision-free electron-ion mixing•

They have, on the whole, yielded negative results 1.

• Seitz, R. N., Shelton, R. D. Stuhlinger, E._ "Status

Report on Neutralization," Proceedings of the Monterey

Conference, 1961.



Broadly speaking, it is found that the electrostatic

field mechanism for the adjustment of electron densities

results in "overshooting" by the electrons• At best only

neutrality in-the-mean has been achieved in these

theoretical models of the mixing problem 2. Whenever

the electrons are released with velocities greater than

twice the ion velocities (and in ion engines one would

want to release them with possibly three times the ion

velocity), theory has failed altogether to provide a

rigorous solution: i.e., a self-conslstent field distri-

bution in the beam.

This is one cause of possible pessimism regarding ef-

ficient mixing, and extensive experimental research was

devoted to checking the theoretical predictlons. On the

whole, these experiments have resulted in reversion to

optimism and even complete disregard of the problem. On

the other hand, the experiments encountered the criticism

that space conditions cannot be simulated properly in the

laboratory, and distant boundaries seemed to play a major

role in the theories.

In the meantime, further theoretical developments

have not been able to settle with certainty the questions

• Staff of Ramo-Wooldrldge Research Laboratory, "Electro-

static Propulsion", Proc. of IRE, April 1960, Vol. 48,
P 477.
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of whether and how neutralization may occur. The search

has continued for a static potential distribution in the

neutralizer region, taking into account more complicated

effects. The original calculations had been concerned

with monoenergetic electrons and ions, and had at best

resulted in spatially varying potentials, i.e., permanent-

ly unneutrallzed positive and negative regions in a one-

dimensional model under the restricted velocity conditions

mentioned.

The injection of Maxwelllan velocity distributions of

electrons into an ion stream which itself is not complete-

ly monoenergetic was therefore studied. The following

characteristics of such a system may be anticipated:

(1)

(2)

(3)

(4)

(5)

(6)

The temperature is that of the emitter, say 2300 °,

equivalent to kT = 0.2 electron volt, correspond-

ing to a mean one-way electron velocity of 150 km/sec.

The potential is very close (within 0.2 volts) to
that of the electron emitter.

The ions, and the whole plasma, drift with a

velocity corresponding to the potential dif-
ference between ion emitter and plasma. Assum-

ing 3000 volts Cs ions, this is 65 km/sec.

The density is that of the ion beam at this veloc-
ity; assuming 15 ma/cm 2 ion current, this means

1.4 x $010 ions, and the same number of electrons

per cm _ .

The electron plasma frequency corresponding to

this density is 1000 megacycles/sec.

To produce the assumed Cs ion beam one would use

an accelerator grid at -5000 volts, one-third of
a cm from the ion emitter.

3



H. Derfler 3 some time ago developed a complete Boltzmann

analysis of the problem stated• As in the case of mono-

energetic particles, it was possible at best to obtain

spatially periodic potentials with neutrality in-the-mean,

provided the mean one-way thermal electron velocity did

not exceed that of the ions. Derfler suggested, and this

has been the view of many other theoreticians 4, that

neutralization, if it occurs in space, cannot be a strict-

ly static process. Somewhere there must be a source of

entropy, i.e., a mechanism which causes ergodic behavior

and increases disorder.

A considerable effort is being devoted to investi-

gate the optimum conditions for space-charge neutraliza-

tion in ion rocket beams. It is expected that the simu-

lation of the electron-ion mixing mechanism in an ion

engine on a high speed digital computer (discussed in

this report) will add considerably in achieving optimum

conditions for space-charge neutralization purposes.

Correlation between theoretical and experimental

•

4.

Derfler, H., Private communication.

Kaufman, H.R., "Electron Diffusion in a Turbulent

Plasma", NASA Technical Note D-134, Lewis Research
Center.
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results 5'6'7'8'9 will be of great help in optimizing the

design and further improving the performance of an ion

engine.

The simulation of an ion engine described in this

report covers three phases. The first two phases describe

the formulation and results for the idealized one- and

two-dimensional configurations, and the third phase

includes the effects of an aperture at the decel gri_ plane.

The formu_tion and results of the one-dimensional configura-

tion are described in Sections II and III, respectively,

while the formulation and results of the two-dimenslonal

configuration (idealized) are discussed in Sections IV and

,

e

•

#

,

Design, Fabrication, and Testing of a Cesium lon

Rocket Engine, Summary Rpt. Phase III, Contract
No. NAS 5-517, Hughes Aircraft Company Research

Laboratories, Malibu; March 1964.

Kaufman, H.R., "The Neutralization of Ion Rocket

Beams"; Technical Note D-I055, NASA Lewis Research

Center; August 1961.

Kemp, R.F., Sellen, J.M., Jr., and Pawllk, E.V.,
"Neutralization Tests on a Flight-Model Electron
Bombardment Ion Thrustor", Technical Note D-1733,

NASA Washington; July 1963.

Sellen, J.M. and Shelton, H. "Transient and Steady
State Behavior in Cesium lon Beams", presented at the

American Rocket Society Electrostatic Propulsion Con-

ference, Monterey, Calif., November 3-4, 1960.

Sellen, J.M. and Kemp, R.F., "Cesium lon Neutralization
in Vehicular Simulation", presented at the joint meeting

of the National IAS-ARS, Los Angeles, Calif., June 13-16,

1961.

5



V. The effects of an aperture at the decel grid plane

are described in Section VI, and Section VIII describes

the conclusions and suggestions for future work.

6



ONE-DIMENSIONAL ANALYSIS

A. General

The ion-engine configuration simulated on the high

speed digital computer is shown in Fig. 2-1. The model

of the emitter neutralizer system was reduced to less

and less complicated forms for the purpose of maximum

economy in the numerical procedure. Starting from the

configuration shown in Fig. 2-1, we eliminated Region A

and forced ions through the "accel grid" with a given

unalterable velocity and intensity. We also eliminated

Region C for a first calculation, letting the electrons

emerge from a hot ideal grid at spaceship potential.

The omission of A is in error only to the extent

that either an unusually energetic electron, or a

rejected ion, might penetrate into it; thereby upsetting

the normal diode potential distribution in this space

which, in accordance with Child's law, determines the

ion current forced into Region B. In the computer

program particles which pass through the accel grid in

the wrong direction are written off.

We assume zero thermal spread of the incoming ion

velocities, since there are several thousand volts

across Region A, compared with 1/10 volt thermal

energy at emission, and since acceleration has, by

it °_I_ a "_i_"_, __ e_*

Y
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The spaceship will charge up; i.e., the potential

of the electron emitter will rise and fall with respect

to that at infinity in accordance with the amount of

charge ejected. In the calculations, the potential of

the spaceship will be evaluated. One needs to know

the value of the field, and this is, at each location

in Region C (see Fig. 2-2), determined by the number of

electron sheets minus the number of ion sheets which

lie to the right of that location. (In space, beyond

the farthest charge sheet, the field is zero.)

In Region B, one determines the field at each loca-

tion by counting the excess number of electron sheets

over the ion sheets between that location and the

electron emitting grid, and adding the appropriate

multiple to the value of the field immediately to the

left of that emitter. The latter field has then to be

determined such that the potential drop between accel

grid and electron emitting grid has the required value.

A typical field distribution in Regions B and C

is illustrated in Fig. 2-3. The determination of the

field is accomplished in practice by a count of the

number of particles of each (ions or electrons) which

lie to the right of any location.

This count requires ordering the particles at each

...... _ their .....7...... _ __step _- time ac_u_.uing _ _ °

A new sorting procedure (appropriate tag numbers are

associated with the particles according to their

space distribution) was used for this purpose, and

O
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experience with similar programs was employed. Actually,

the sorting was most time consuming and, for 5,000 parti-

cles of each kind, took approximately 2 seconds on an

IBM 7090 Computer for each time step. The advancing time

of each particle through one time step (finite difference

formula was used for the acceleration process) was quite

short on the computer.

B. Formulation of the One-Dimensional Analysis

Figure 2-2 shows a schematic of the geometry to be

used for the analysis, lons are injected into Region B

from the left at a specified rate. The accel electrode

is located at x/_ = 0, and the electron emitter at x/_ = i.

Thus, we use the normalized position variable x/_ (See

list for definition of symbols in Section II. H.)

The problem is divided into two independent regions

(B and C) as shown in Fig. 2-2. Treating the boundary

between Regions B and C as a conducting plane allows

this division of the problem into two regions. Region B

has an ion flux incoming from the left and an ion flux

leaving to the right. Electrons are emitted into Region

B from the right and should not reach the left boundary.

When sufficient electrons are emitted into Region B to

form a negative space charge distribution, additional

electrons are rejected near the boundary x/_ = i. Region

C starts at x/_ = i and goes to x/$ = infinity, lons and

electrons are injected at the left boundary of Region C at

the same rate as they left Region B. Additional electrons

are also "boiled" into Region C from the left boundary.

12



The electron emitter Is assumed to be held at

a fixed potential relative to the accel grid. The

ship is allowed to float in potential. This potential

depends on the amount of total charge which has left

the ship.

The equations of motion for a one-dimensional

charged sheet are:

and

d2Xe e
---E

dt 2 m
(2.-1)

d2x I e
- + -- E. (2-2)

dt 2 M

The procedure for calculation of trajectories begins

with the sheet farthest to the right (largest x

value). Here the electric field Is 0. Whenever a

sheet is passed, the electric field Jumps by a fac-

tor qs/_o. The electric field E acting on a sheet

is the mean between those prevailing on the right and

the left and equals _I' where 7 is a odd integer

obtained by counting sheets (see symbol list for

definition of 7).

Putting the equations In finite difference form

and dividing both sides by the square of a plasma

13



frequency, we have

A 2 (xeT} -eE/m

2At2- { P eo) __p m e

C

o E
_p

Nq s

Now we define p = T as the standard of charge

density with N a pure number yet to be specified;

¥qs
also, E :

2e
o

Thus for electrons:

2-3)

A2 (xe : - 2-4)

and for the ions

A2 (xi = mT) (M}[_p2 At2][+ 2-_N] 2-5)

The choice of N for the purpose of defining a

conventional standard of charge density (and hence

electron plasma frequency) is somewhat arbitrary.

We expect to use time steps of the order of one-tenth

the electron plasma frequency in the mixing region.

Assuming that in this region electrons and ions have

comparable densities, and that the ions maintain more

or less the density at which they are injected, we

14



choose the ion charge density at injection as our

standard densit_ but use the electron mass in the

calculation of a standard plasma frequency:

e p

m c o (2-6a)

If now the ions continued to travel at in-

Jection velocity in Region B, the number of ion

sheets present in that region at any time would Just

be N, representing an average uniform charge density

of amount

p

Nq s

(2-6b)

Thus, we have identified the number N.

The ion injection velocity into Region B Is

determined by the potential between the ion emitter

and the accel grid. Thus,

U
O

(2-6c)

Putting in finite difference form and dividing by

_# we obtain

o
_p Nq s

E o

(2-7)

15



Region A (see Fig. 2-i) between the ion emitter

and the accel electrode is assumed to have a potential

distribution in accordance with Child's law. Thus,

the potential Is:

I_/21__11/4
Mo3/4=(3}_eo| 12el L , (2-8)

where L is the distance between ion emitter and accel

grid. The ion charge density p at injection is re-

lated to J by J = PUo, where u° is the ion velocity.

Thus,

J J

Then we can form the quantity

<Po C°o

p L2/c J L 2
0

[2(e/M)_Po] 1/2 Co

2

(2-10)

Thus, from the definition of N,

_o 9

Nqs L 2 -

¢o _

(2-11)
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Substituting Eq. 2-7 into Eq. 2-11 we get

C)A injection = (COpAt) _3L M-2m1/2 (2-12)

In Region B the plasma Is bounded by two conduct-

ing plates: thus, the formulatlon of the e!ectrlc field

is slightly different than in Region C. First, the field

next to the electron emitter has to be determined. There-

after, a procedure similar to that used in Region C with

an equivalent ¥ can be used.

To evaluate the field immediately to the left of

x/_ = 1 we have

qs [ xl x ] , (2-13)

where _ refers to summation over all ions and electrons

in Region B, and Edc = _1/_. Rewriting Eq. 2-13 in

normalized form by multiplying by eo/qsN, we obtain

o 1 iL i e
= /T + (2-18)

qs N
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Then, using the odd integer y as defined before but

bounding the counting region by x/_ = 0 and x/_ = 1

the equations of motion in finite difference form are

=- Up qs _ + (2-15)

and

A 1[ 2 ti[ i[Co i1= qs N + _ , (2-16)

where Eq. 2-14 can be substituted for e° El/qs N.

The ion sheets are assumed to be injected into

Region B from the left with a uniform velocity dis-

tribution. The number that is to be injected in each

time step is calculated from the parameters which

are initially fed into the program. If we let

_k be the number of ion sheets emitted per time

step, then

J At

_k - qs
(2-17)

Multiplying both numerator and denominator by
p'

we have

_k =
a(_pAt)

qsC°p
(2-18)

18



Substituting for J = pu o and _p as defined above,

_k = i/2 = 3 N i-_-j (COp At)
, (2-19)

A_
UI"

3 /2m11/2
N - 2 _ _M / (dOp At) (2-20)

Eor ease of calculation, _k should be a rational

number; then one can inject either _k ions each step or

one ion each (i/_k)th step. One can achieve thls conven-

ience, for given ratios L/_ and m/M, by adjustment of

At.
P

One interesting ion engine characteristic to be

determined from the calculation is the potential of the

spaceship relative to space. This may be obtained by

integrating the electric field from the sheet farthest

out from the ship. The potential of the spaceship in the

presence of only the Nth charged sheet in space is

qs
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Thu s

_qs=- _- (x i - Xe) (2-21)
O

(sum over all sheets in Region C).

Normalizing and substituting from Eq. 2-11 , we obtain

Cpo 2 (2-22)
N

Another quantity of interest is the number of sheets

per Debye length. Defining for the purpose of these cal-

culations the Debye length in terms of the thermal energy in

a Debye sphere,

k 2 _ kT ( 2- 23 )

D me (COpe )2

Substituting for the plasma frequency and dividing num-

erator and denominator by _o' we obtain

XD )2 kT (2-24)
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C. Calculation of Actual Thrust Per Unit Area

In the computer calculations the electric field

adjacent to the electrodes will be known. The elec-

trodes are assumed to be thin grids for the purpose of

these calculations. Since an electric field change

occurs when passing from one side of the grid to the

_bmer, a_1 _u±va±_m_ charge can be aS_LL_u bu be

present on the grid. This charge per unit area qsl

is equal to _o (Eright - Eleft)" The force per unit

area on the grid is T =(qsl/g)(Eright + Eleft)/2 , where

the mean of the sum of the electric fields on both

sides of the grid is used. Thus

_o (Eright 2 2) *T = _ - Eleft • (2-25)

For the region between the genode and the accel grid, a

Child-Langmuir distribution has been assumed. Thus, the

field at the genode surface is zero, so that we have only

two grids to consider, the accel grid and the electron

emitter decel grid (see Fig. 2-1). The field to the left

of the accel grid from the Child's law (Eq. 2-8) is

= 2 (2-26)

A positive thrust indicates that a dra_ on the ship as

a positive force is a force to the right and, con-

sequently, from the ship's viewpoint, a retarding force.
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Now let EI be the field immediately to the right

of the electron emitter, E2 the field immediately to

the left of the electron emitter, and E3 the field to

the right of the accel grid. Then the total actual

thrust per unit area on the ship is

e° [ 2 2 4P_°] (2-27)T = _ EI - E22 + E3 Co

Assuming Region B to be bounded by metal grids, the

field immediately to the left of x/_ = I is

qs [ xi x]-- - Z -_ , (2-28)

where the summations are over all ions in Region B and

all electrons in Region B, respectively. The field to

the right of the accel grid is

_3 = _dc+ -- Z _ _ , (2-29)
C o

where the summations are over all ions and electrons in

Region B, and Edc is given by

Edc = T (2-30)

The field to the right of the electron emitter equals

* qs

E 1 = 73 _ , (2-31)
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where Y3 is the number of excess electron sheets to the right

of the electron emitter. (See symbol list for definition of

symbols.) Forming E32 - E22, we obtain

2 x z  )21qs (E3 - E2 ) = _qs - _qs

all elec- all

all all elec-

ions trons

(2-32)

By letting N e = total number of electron sheets in Region

B and Ni = total number of ion sheets In Region B, we re-

write Eq. 2-32 in the form

Co 2 2 _1Co +_ Xl Xe e
qs _ (E3 - E2 ) = 2(Ne - N1). |_s -T -2 _-- + 2

(2-33)

Thus, substituting Eq. 2-23 into Eq. 2-27 and normalizing,

we obtain

( zx zx_qs *2 q°leo + __ _ e

_0oqs - 2_0oC o 3 + 2(Ne - Ni) _qs _ -_-

+ I ]Ne - Ni 4p o

0

qs J

(2-34)
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Substituting

-and

Nq s

p -

_0 o

=_ N_2

into Eq. 2-34, we obtain for the normalized actual thrust

per unit area

Tgl

_oqs

x e N e - N i 3L 2 ]->-:T+ .
(2-35)

From this thrust equation some interesting observations

can be made:

I. The third term within the main bracket is

the largest term and is negative. This indicates

a force which accelerates the ship in the proper

direction.

2. If the number of ions and electrons in

Region B are equal, there is no retardation of

24



the ions by the decel grid (electron emitter).

In practice, however, this lack of retardation

will not be observed since the electrons would

then be intercepting the accel grid - an un-

desirable condition.

3. Any field on the surface of the ship (to

the right of the electron emitter) results in

2

loss of thrust. 73 ,whether T3 is positive or

negative, is always positive, thus giving thrust

loss.

D. Calculation of Ideal Thrust Per Unit Area

Ideal thrust occurs if complete mixing takes

place outside the ship in Region C, and sufficient mix-

ing occurs in Region B to result in the ions being

decelerated by the decel grid potential _I"

We can obtain an ideal value for the thrust by

assuming that all ions leave the ship after being ac-

celerated to the potential of the grid (_o + _i )'

wherein _i is a negative number.

The thrust per unit area from ion ejection is:

Thrust/unit area = momentum/_nit time and unit area =

T _

number of mass per

ion sheets unit area

per unit per sheet
time

mass to exit ion

weight velocity

conversion AXl/At

(2-36)
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or

x i
A(T)

* _k qs M _ (2-37)
T - At e g At

In Equation 2-7 we calculated the normalized dif-

ference A(xi/_) for injection into Region B. To obtain

the ideal injection into Region C we substitute _o + _I

for _o in that equation and utilize Eq. 2-Ii defining

the number N:

{xi}{}(}ij2( i)iJ2A T = (_pAt) 3L
____/ _..._m 1+_-£,

(2-38)

Using Eqs. 2-6a and 2-10 in connection with Eq. 2-38, we

can rewrite Eq. 2-37 in the normalized form as given by

the following equation:

Substituting Eq. 2-20 into Eq. 2-20 into Eq. 2-38a, we obtain

for the normalized ideal thrust

_oI )1/2
T*g_ 2N 1 +

_oqs = _o
(2-39)
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E. Comparison Between Ideal and Actual Thrust

The ratio of actual thrust to ideal thrust can

be formed by combining Eqs. 2-35 and 2-39:

T i I¥'2--_--- l_T_21 q0_ i/2 o 3 + 2(N

IJ_l I _O1 eT 4-_-_ i+ N_- L

_ . "_

2

xi XeNe- iJ I /]._ T + 2 - (2N) 2 3L 2 (2-40

This relationship between the actual thrust and

the i_eal thrust is output from the computer at every

step so that the engine performance can be related to

the mixing of the ions and electrons.
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F. Random Electron Emlssion Velocity

The probability P of an electron having a velocity

v in the cathode is:

mv 2

- 2kT

e

P(v)dv- dv
k T/m

(2-41)

but the probability of an electron being emitted from

the cathode surface with velocity v is

mv 2

2v "
P*(V) dv = e dv ,

m

(2-42)

Ol"

mv 2

1P*(V) dv = e d
2kTl

(2-43)

The integrated or accumulated probability distribution

is

v 2

oe - mv e
P(v) dv = I - e 2kT (2-44)

Now we can choose random numbers from a uniform

distribution between 0 and i. Calling this random

number I-R, we let
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mv 2

I-R = l-e 2kT (2-45)

Since i-R is just as random as R over the domain from

0 to i, we can take the logarithm,

vm2_

_n R = _n Le 2kTJ (2-_6)

or

_n R1 i/2
(2-47)

Forming the finite difference for computer cal-

culations, we obtain

÷)x v e 2kT _n --
= _ = m

(2-_8)

Normalizing with the use of Eqs. (2-6a) and (2-i0) we

obtain:

A = (_p_t) 3_ {2kT.LTA_)1/2 1/2t % (-m R)
(2-49)

The above information was programmed into the one-

dimensional program.
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G. Intesrated Plasma Potentials

Of interest in understanding the plasma behavior

is the electric potential within the plasma. Since

time varying fields exist within the plasma, it is

not strictly correct to call the integrated electric

field an energy function. Nevertheless, it will be

instructive to calculate a potential by integrating

the fields that exist within the plasma.

In the model chosen for the analysis, the elec-

tric field and electric potential are zero at x equals-

infinity. Thus, we start at large x where E is 0 and

integrate inwards to find the potential.

Now the field in the plasma is

@@

7 qs
E -

E 0

where 7 is the number of electron sheets to the right

minus the number of ion sheets to the right in the

plasma. Now,

and

_p = - #E • dx

_p = - Z Ei Axi

(2-,50)

(2-51)

(2-52)
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where E i is the field between the sheets i and i+i, and

Ax i is the distance between the two sheets.

Substituting from Eq. 2-11, and normalizing Eq. 2-52,

the following is obtained:

Ixl
_o ¢o_o i

(2-53)

or

i Ixl_o _l_l _ 7,_ 7_ (2-54)

A running record of the normalized potential is

recorded at every ion and electron sheet position. These

potentials are then plotted vs. the normalized position

variable x/_.

In Region B between the accelerator grid and the

decelerator-emitter grid,a slightly different formula-

tion is involved because of the dc potential•

In Region B,

Y qs
E--El+

E o

(2-55)

31



No

E

e
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J

L

M

m

N

P

p*

qs

R

T

T*

U o

X
e

x i

Z

Y

y@

c
o

Ok

P

cp

Definitions of Symbols used in One-Dimensional Configuration

electric field

electron charge

gravitational constant

ion current density = charge/unlt area injected from

left at x = O, per unit time

interval length between ion emitter and accel grid

interval length between accel and decel grid or electron
emitter

ion mass

electron mass

number of ion sheets in Region B if ions proceeded at

injection velocity

probability distribution of electrons in velocity space

probability distribution of electrons being emitted

from a cathode in velocity space

charge per unit area for each sheet

random number from a uniform distribution, 0 < R _ i

thrust per unit area

ideal thrust per unit area

ion injection velocity

position of electron sheet

position of ion sheet

normalized position variable x/_

twice the number of electron sheets to the right minus

twice the number of ion sheets to the right + 1

e eot onfor an ion sheet)

number of electron sheets to the right minus the

number of ion sheets to the right

dielectric constant of free space

number of ion sheets injected at each time step

ion charge density at injection and also the electron

charge density standard

potential of ship relative to space
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0

P

potential between ion emitter and accel grid

potential between accel grid and electron emitter

plasma frequency
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III. ONE-DIMENSIONAL RESULTS

A. Review of the Computer Model

Our model is, for the first part of the program, one-

dimensional; ions and electrons are idealized into sheets

of charge. We inject cold ions through the accel grid and

electrons from a hot decel grid with a Gaussian velocity

distribution. We study the situation both upstream and

downstream of the decel grid (see Fig. 3-I).

All of the dynamical equations of the system are pro-

grammed into a high speed digital computer with the vari-

ables in completely normalized form. These input variables

are :

L

N
m

_o

kT

e9 o

I]e

N

Ratio of distance between the ion emitter and the

accelerator grid to the distance between the accel-

erator grid and decelerator-emitter grid

Ratio of ion mass to electron mass

Ratio of the potential between the accelerator grid
and the decelerator-emitter grid to the potential
between the ion emitter and the accelerator grid

Ratio of mean electron energy to potential difference

between ion emitter and accelerator grid

Number of ion sheets injected per time step

Ratio of electron sheets injected per time step to

the number of ion sheets injected per time step

Approximate number of ion sheets between the accel-

erator grid and the decelerator-emitter grid
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The output variables from the computer are:

_ship

9o

Ratio of the integrated spaceship potential at each

time step to _o

Tactual

Tideal

Ratio of the force exerted on the ship by all the

charged sheets to the ideal force on the ship cal-

culated at each time step from the change in momentum

one would expect if the ions left the ship with energy

_o - _i

Ratio of 9o the potential in the plasma to 9o as a

function o_ distance from the accelerator grid. The

potential is found by integrating the electric field

in the plasma from the sheet farthest out to the

accelerator grid

The electron current density is variable. Half of

the temperature-limited electron current is injected up-

stream and half downstream. The electron sheets injected

upstream are returned by the negative decelerator potential

and made available for downstream mixing after passing

through their emitting grid again. However, a grid inter-

ception rate of one in four passes is programmed for elec-

tron sheets. No ion-electron collisions have been programmed.

Injection of electrons from the hot grid began simul-

taneously with the entry of the first ions through the

accelerator grid. The system was followed until the head

of the beam had penetrated to a maximum of 150 inter-grid

distances out into space.

The thrust was monitored throughout, as the actual

force on the supposedly rigid grid system (see Fig. 3-i).
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B. Plots Made from the Calculations

Zero field was imposed as the condition in free space

ahead of the beam, and the ship was left to find its own

potential relative to space. This potential was monitored,

although fields only (not potentials) were required for

tracing the charges.

The instantaneous potential is calculated as a func-

tion of distance for many successive time steps in several

cases.

Time displacement graphs of some of the particles are

also traced automatically for several cases.

The numerical procedure employed approximately twenty-

two time steps per complete plasma oscillation for a typical

calculation. (See variable 2_/_p_t.) The charge continuum

is coarse-grained into discrete sheets such that there are

up to ten sheets of each species per Debye length (for N =

240). However, coarser models, down to only just over one

sheet per Debye length (N = 30), were also tried.

Electrons and ions were emitted at regular time inter-

vals. The injection velocity of the ions was fixed while

that of the electrons was picked randomly from a Gaussian

distribution at the specified temperature.

C. General Results

A good plasma was formed, mixing was almost perfect,

and the thrust maintained its ideal value after a brief
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initial adjustment in all cases except where prevented

by a deficiency of electrons.

No electrons penetrated through the accel grid.

They were repelled at a certain distance upstream of

their source, with only ions beyond. The upstream bound-

ary of the plasma lies exactly where predicted from the

theory of self-cQnsistent ion flow between the accel grid

and the plasma. This theory is developed in Section 3E.

lons made turn-arounds only when a deficiency of elec-

trons was allowed to develop. Electrons randomly drifted

about through the entire plasma. The advancing head of the

beam acted as an electron reflector. The head seemed to

become more and more diffuse. There appeared to be a for-

ward acceleration in space of the first ions, perhaps due

to plasma pressure.

No distinct "plasma puffs" developedJ i.e., self-con-

tained advanced groups of ions holding in their own elec-

trons.

A slight tendency toward electron sheath formation at

the hot grid was apparent. This sheath was intuitively

predicted as a device for keeping back unwanted excess

electrons.

Fields (potential gradients) remained moderate through-

out the plasma, and the electrons did not acquire unduly

high energies about their initial kT unless an electron

deficiency developed.
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However, there were marked potential fluctuations.

In space these fluctuations seemed to become less violent

as the number of sheets per Debye _ength was increased.

Also a ]_nger time was needed for the fluctuations to build

L_pwhen more sheets were used.

In time, however, they remained at an unexpectedly

high level and occurred with electron plasma frequency.

Certainly, it is felt that an ion engine similar to

the model described here will work in space and provide

thrust. The electron plasma frequency oscillation re-

ported here have not been confirmed by all experiments,

but one must keep in mind their longitudinal and very high

frequency nature, and hence the difficulty in observing

them. With electric fields of rapid time variance, it

is not correct to talk about potentials as energy functions.

Even though relatively large integrated potentials appear

at the ship, electron velocities much greater than the

electron injection velocity are not observed. Thus, these

fluctuations in spaceship potential are not detrimental

to the performance of the engine, but, on the contrary,

provide the mechanism by which the beam is neutralized.

39



D. Detailed Results and Discussion

Several cases of emission and velocity for electrons

and ions were simulated for several values of mass ratio.

These results have already been described in detail in

Quarterly Reports 3 and 4. Some of the most significant

results are presented in this report. Figure 3-i shows

a schematic of the potential distribution for the one-

dimensional configuration. Typical ion and electron

trajectories for the case where M/m = i800 are given

in Figs. 3-2 and 3-3, respectively, while the variation

of the ship potential as a function of time for the same

case is shown in Fig. 3-4. A three-dlmenslonal plot for

the potential as a function of beam-front distance and

time is shown in Fig. 3-5. In this case the fluctuations

do not seem to be detrimental to the ion engine performance.

Figures 3-6 through 3-9 show the plots of ion trajectories,

ship potential and thrust for the case of M/m = 576 (the

other parameters are indicated on the various figures).

The bunching of the ions around T/At = 900 may be noticed

in Fig. 3-6; its effect on potential and thrust may be

noticed in Figs. 3-7 and 3-9, respectively. Figure 3-8

shows the variation of the integrated potential as a

function of beam distance from the ship for different

time intervals. The deterioration in the ion engine

performance, as noticed from these plots, seems to be
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due to deficiency of electrons. An increase in electron

emission did not show any such deterioration in ship

potential and thrust, as shown in Figs. 3-10 and 3-11.

The electron trajectories in both cases were similar to

those shown in Fig. 3-3.

Subsequent calculations were made with both the

large and small time steps. When large tlme steps are

used, instabilities, if they exist with a certain set of

parameters, will develop sooner in time and will then be

observed. However, if small time steps are used, these

instabilities may never be seen, because insufficient

time is allowed for bulld-up. That is to say, when an

inherently unstable calculation is being made, the in-

stability will manifest itself sooner when additional

noise is fed into the system by a large discrete time

step.

Figures 3-2 through 3-5, given above, are plots of

results of a one-dimensional calculation for hydrogen.

The calculation was completed for 95.5 electron plasma

periods, and good mixing and thrust were observed.

Figures 3-11 through 3-14 are the same run, except that

N = 60, and the calculations are carried out to 318

plasma periods. Observe the continuous build-up in time

of the potential fluctuations in Fig. 3-13. Figure 3-14

_nd_cates _ _,_o,_ _? *_s* _* 260 n *_ steps;
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the potentia_ f'luctuat_on then appears to have leveled

off in subsequent time steps. However, a dc component

i_ potential is observed. This dc potential arises _n

the proces_ of thrust blow-up observed in Fig. 3-14.

The deterioration in thrust results from a deficiency

of electrons in the plasma, as do all thrust blow-ups

observed in the study. This electron deficiency resulted,

we believe, when the rate of interception of electrons on

t_e accelerator grid electron emitter exceeded the rate

of _njection of electrons.

In order to cut off electron emission so that an

unrealistically high electron density did not build up

around the electron emitter, an electron interception

rate was programmed into the problem. For the cases

plotted in this report, an interception rate of 25 per-

cent was programmed. That is, every fourth electron to

pass through the electron emitter was written off. Since

t_e electrons, after being emitted, proceed to the front

of the ion column and bounce back toward the ship, one-

fourth of them are written off when they pass through

the electron emitter. The rest again bounce off the

potential gradient between the decel grid and the accel

grid, and again pass back through the electron emitter

with one-fourth again being written off. Thus, in th_s

particular calculation, only half of the electron flux
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flowing back to the ship is returned to the plasma.

Since, in the transient problem being calculated, the

returning flux increases with time, the returning flux

eventually exceeds twice the emission flux. The

plasma looses electrons faster than electrons are being

received. Thus the thrust deteriorates due to lack of

neutralization.

The ship potential and thrust plots for two different

values of _i are shown in Figs. 3-15 through 3-18, from

which a comparison can be made. The total number of

time steps in the two cases is different, so they represent

the same distance traveled by the beam away from the ship.

The potential fluctuations seem to be reduced for the

case of smaller value of _i' while the difference in

thrust between the two cases is too small to make any

general conclusion. The effect of the variation of N

on the ship potential and thrust is made evident by

comparing Figs. 3-19 and 3-20 with Figs. 3-17 and 3-18,

respectively. For the smaller value of N, a thrust

deterioration is noticed at T/At _ 3500; this is again

correlated with ion bunching, as seen in Fig. 3-21. As

mentioned before, this deterioration seems to be due to

lack of electron emission. The effect of an increase in

the electron emission on thrust is shown in Fig. 3-22;

there was a significant difference in the thrust fluctua-

tions, while the change in fluctuations of the ship
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potential was insignificant. An increase in the electron

emission seems to increase the fluctuations in the thrust

(also noticed from the two-dimensional results given in

Section V). This increase in the electron emission does

not seem to improve the thrust characteristics, as com-

pared to the case of M/m = 576, discussed above (compare

Figs. 3-9 and 3-ii). This variation is not completely

understood, and sufficient data is not available to make

any general conclusions.

In these calculations the transient process starts

electrons from the decel grid and ions from the accel

grid simultaneously. When the ions pass through the

decel grid, electrons are carried along. It may be

that, in the beginning, the electron flux must equal

the ion flux, and, when electrons return from the out-

side plasma boundary, the flux being emitted from the

decel grid must decrease. However, when the reduced

primary flux returns from its bounce off the ion front,

a deficiency of electrons occurs. This procedure is then

repeated, building up an oscillation.

Thus it is concluded that this instability is due

to electron deficiency. The development of instability

when an electron-to-ion emission ratio of 2 is used is

quite interesting and not completely understood.

An ele_t_-_-_un emission ratio of 8 gives good

t_rust, but a ratio of 2 does not. Electrons which
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bounce off the 1on front lose energy; thus only a

finite number of bounces Is permitted before the

electron velocity is reduced to the ion velocity in

the absence of a plasma-heating mechanism.

An additional observation can be made by comparing

Figs. 3-14 and 3-20. The electron deficiency instabil-

ities seem to develop in about 200 electron plasma

periods, irrespective of the difference in mass ratio.

It is intended that the plots in this report sum-

marize the one-dimensional calculations. Additional

study of the parameters is required to draw definite

conclusions about the functional dependence of the

output variables on the parameters of the problem.

In the previous calculations, a problem was encounter-

ed when a large electron-to-ion-emlssion ratio was usedJ

the potential depression around the electron emitter

grid was much larger than analytical physics had pre-

dicted. Instead of corresponding to a few kT, the po-

tential depression around the grld was of the order of

several %. To eliminate this departure from the correct

simulation of the problem, a change was made in the com-

puter program.

The original electron emission process of the

program consisted of giving an electron sheet a randomly

selected velocity; if the initial velocity was positive,

the electron was placed on the positive side of the grid;
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but if the velocity were negative, the electron was placed

on the negative side. However, a problem would develop

if the electric field near the grid was strong enough to

cause the first difference of the electron to be such that

the next position of the electron would be on the other

side of the grid. If this first difference were large,

the electron sheet was placed at a potential difference

corresponding to _o' instead of the few kT which normally

stop and turn around electron sheets.

The program was changed so that any electron which

moves back through the grid on the first step after emis-

sion is written off. Run 15H was repeated, and the results

are shown in Figs. 3-23 through 3-25. This modification in

the electron emission, as discussed above, does seem to im-

prove the thrust characteristics, while the fluctuations in

the ship potential are slightly increased. These results

indicate that the simulation of the initially emitted elec-

trons is very important; a similar conclusion is made from

the results of the two-dimensional configuration given in

Section V. The E-field may, in some cases, vary rapidly

in space, but a relatively large number of time steps in

each plasma period ensures more accurate results.

In summary, these calculations show good mixing.

No electrons pass through the accel grid and bombard

the ion emitter. The thrust is slightly greater than

ideal. The reason for this is not completely understood.

However, the condition seems to be correct, since the
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outer ion s_eets are continually accelerating. This

may be due to the force generated by the plasma pressure.

The fluctuations in ship potential plotted in Fig. 3-23

continually increase in amplitude. However, great poten-

tial differences between points far apart in position

are not troublesome. The integrated potential plot

(Fig. 3-25) shows how the large potential difference

develops.

E. Shelf Development Condition

Of interest is the comparison of the shelf developed

under ideal dc conditions with that which the one-dimensional

computer program predicts. The following is a derivation

of the shelf conditions one would expect to develop under'

ideal dc conditions. The shelf formation is shown in Fig. 3-26.

Assumptions made in the analysis:

i. Distribution of electrons from emitting

(decel) grid is Maxwellian.

2. Density and speed of the electrons match

those of the ions.

In the shelf region, very small potential differences

are able to control presence and absence of electrons;

hence, from the point of view of the kilovolt scale

controlling ion motion, the shelf is effectively a

_']eld-free region. We assume that

E :: -d¢/dx = 0 (3-1)
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at shelf. Also, in the region between genode and

decel grid,

Ldx'J

ion ion

density velocity

(3-2)

where x' is the distance from genode and _ is measured

relative to the genode potential. From Child's law

J = eo 9L--'2 M ]

1
2

, (3-3)

and using the expression for ion velocity (at the accel

plane) given by

the following is obtained:

(3-4)

3

__@_ e = Vo

M _, ;'3L '2 (3-5)2¢ 0

Now let:

L' be distance of shelf from decel grid

x" equal running distance from shelf leftward

_2 equal the potential difference between genode

and shelf. Then,
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[  iJ24 = co dx,,2] (3-6)

(This is the valid equation in the decel-shelf region,

where there are assumed to be no electrons.) Equation

3-6 must be solved with the following boundary conditions:

= - qoo at x" = L

_o = - _o2 at x" = 0

d_/dx' = 0 at x" = 0

(3-7)

In the region between the decel grid and the shelf, the

ion velocity v is used as the running parameter. It goes

from v = v2 at the shelf to v = vo at the decel grid,

where

v V2e_o V2e_2' Vo = M and v 2 = --_ . (3-8)

Also

dx' dx' _ dx' = _ _dx '2 dx ' ,

(E = field)

(3-9)

(3-10)
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From Eq. 3-8 we obtain

d2

_x-_,- 2e d- M d(v21 2 = (3-i_)

e d

MY dv

(3-12)

Thus, from Eq. 3-6,

J = ¢o M dv 2 ' (3-_

which,with the condition that E = 0 at v = v2, integrates to

E2 2 M _ (v
" e £o " v2 )

The equatien of motion is

dt = , (3-_5)

Or'

d "_(v2)= M (3-_6)
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where E is now the field reckoned in the direction of

increasing x" (i.e., leftward). This is positive.

Thus, from Eq. 3-14,

E= +

I

.a_ a (v - v 2)
L e £0

(3-17)

(which, incidentally, is proportional to transit time to

shelf), we obtain

E II _.

1

M, l_/" v d(v2)
e]Jv (3-18)

which can be integrated by change of variable, going

back to E:

e ¢o E2
v=v2+ _ (3-19)

and

e¢ o
= _ EdEdv _kT

_-qI( e¢° E 2 )x" -- v 2 + _ dE

x" = v2E + 1/3 _-_

%( e% E2 )x" = _- v2 + I/3 _ E

(3-20)

(3-21)

(3-22)

(3-23)
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Substituting from Eq. 3-19, el!minating E from Eq. 3-23,

x" = _- v2 + I/3

Eo

= 3"-_(v + 2v2)

£o

_/v
_ 0

Letting v : v o, we obtain L'

-_/2¢oM
T,_-I/B___-y (% + 2v2)_/v° - v2 (3-26)

Multiplying through by 3 and squaring,

2M_ o
(3L')2 = (Vo + 2v2)2 (Vo - v2) Je (3-27)

Solving for (L'/L) 2 in Eqs. 3-5 and 3-27,

() ( v2)2(v2)_,2 (v°+ 2v2)2(%- v2) I + 2_ I
L = V03 = "

(3-28)

= L' - L, i.e , deceleration back to
Note that when v 2 0,

zero takes Just the distance L.

Now, from Eq. 3-8,

v o
(3-29)
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hence

_---- I+2 1 -
_o I

(3-3o)

Letting

(P2
--=0.6
_o

we obtain

L !

_-- = 1.21 . (3-31)

Hence, if _ is chosen greater than 1.21L for the above

case, where _2/_o = .6, then a shelf will develop. For the one-

dimensional calculations discussed in thls section, the shelf

developed as predicted above.
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IVo TWO-DIMENSIONAL ANALYSIS

A. Introduction

The formulation and the computational results for

the one-dimensional model are presented in Sections II

and IIY_ The results have produced a fair insight into

the mechanism of space-charge neutralization problem in

ion engines. However, there are several limitations in

the one-dimensional simulation. It does not take into

account the transverse variations which may lead to beam

spreading (or even beam shrinking) in the transverse dir-

ection; moreover, in the one-dimensional model the space-

charge field is considered constant between any two charged

sheets having a discontinuity at the location of each

charged sheet. Thus, it becomes desirable to extend this

analysis to a two-dimensional configuration, taking into

account several practical considerations in the design of

the ion beams for ion engines and the difficulties involved

in solving this problem by using a high-speed digital com-

puter.

Since the plasma electromagnetic wavelength is con-

siderably larger than the dimensions, and as noted from

the results given in SectionslIlandV. space-charge neutral-

ization occurs within very small distances, retardation

effects are negligible; thus, simulation and solution of a
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problem involving Poisson's equation rather than the

wave equation is generally correct. The Cartesian

coordinate system was selected, primarily because the

procedure for solving Poisson's equation developed for

it and discussed in Sections IV.D and IV.E is very fast

as compared to that in the other coordinate systems.

The other advantage in using the Cartesian coordinate

system is that the equations of motion in this system

are separable.

Section IV.B describes the assumptions made in the

analysis, and the description of the physical model is

presented in Section IV.C. Development of Poisson's

10
difference equation, based upon Fourier analysis , and

evaluation of space-charge voltage are discussed in

Sections IV.D and IV.E, respectively. Trajectory equa-

tions are derived in Section IV.G, and the normalization

of the various parameters is discussed in Section IV.H;

Sections IV.I and IV.J describe the injection conditions

and evaluation of thrust.

10. R. Hockney and 0. Buneman, "A Fast Solution of

Poisson's Equations Using Fourier Analysis,"

paper presented at the ACM Conference, Denver;
August, 1963.
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B. Assumptions Made in This Analysis

The following assumptions are made in this analysis:

i. Non-relatlvistlc mechanics are applicable.

2. The initial velocity components obey a Max-
wellian distribution.

3. The effect of direct collisions between electron-

electron, ion-ion, and electron-lon is neglected.

4. The electric fields remain constant within a

small time interval At.

5. The charge enclosed in a small mesh is uniformly
distributed in the mesh.

6. The system is periodic in the transverse direction

with an axis of symmetry in each period.

C. Description of the Physical Model

It has been mentioned in Section IV.A that periodicity

in the transverse(_ direction is assumed. This assumption

is quite consistent with the experimental configurations

currently being studied; moreover, this procedure requires

less computer time, as a result of the grouping procedure

used in this analysis (described in Quarterly Report No. 5).

The periodic system in the Cartesian coordinate system

is shown in Fig. 4-I. Because of periodicity, only one

period is studied. A schematic drawing of a typical per-

iod is shown in Fig. 4-2. A symmetry across y=O axis makes

it convenient to study half period only, i.e., for

0 _ y _ b/2, where b is length of each period in the

transverse direction. The division of the half period
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under consideration, into various rectangles _s illustrated

in Fig. 4-3. Any electron or ion moving out of this half

period has a counterpart particle which moves into this

half period. The complete period is divided into 48 rec-

tangles in the transverse direction extending infinitely

along the z-axis; a different value of this number would

require a different grouping system in the Fourier analysis

section of the potential solver. For maximum efficiency

in computer time and logic, it is always preferable to

have this number equal to the least common multiplier.

With 48 rectangles in the full period (24 rectangles

in the half period), a reasonably good resolution of the

system has been achieved. The charge in a rectangle is

assumed to be uniformly distributed in the rectangle.

The ions are injected at a constant velocity

across the plane x=0 and at several points within 0 < y < a,

where a = width of the unperturbed ion beam in the half

period. The plane x=O is normally referred to as the

accel grid, and ions are injected at a velocity correspond-

ing to the accel grid potential. The plane x=8 is referred

to as the decel grid. The region between the two grids

is divided into 8 rectangles on the basis of resolution

and computer limitations. The decel grid is at a positive

voltage with respect to the accel grid; this tends to

decelerate slightly the ions, and any electron moving
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into the region between the two grids is turned back.

This is necessary to obtain efficient space-charge

neutralization, because any electron crossing the accel

grid will not come back to the region under consideration;

such an electron may even affect the ion emission.

Electrons are emitted with random velocity components,

according to the Maxwellian velocity distribution, from

several points of the infinitesimaly thin emitting surface

along the decel grid from 0 _ c ( d _ b/2, where c and d

are the y-coordinates of the end points of the electron

emitter. The electrons are emitted from both sides of the

emitter. Of all electrons crossing the decel grid between

c ( y _ b/2, a certain percentage are absorbed, with newly

emitted electrons replacing the absorbed electrons in

storage. Because of computer limitations, the space

beyond the decel grid has been tracked only upto 192

rectangles (i.e. x=200). The electrons and ions reach-

ing the plane x=200 are written of_ and newly generated

particles take their place in storage. This seems to be

a reasonably good assumption, because the space potential

observed periodically seems to remain almost constant Ne-

yond x_100, indicating that the beam is almost completely

neutralized. This is also verified by the ion trajectory

plots given in Section 5.
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D. Development of Normalized Polsson's Difference
Equation

Assuming periodicity for space-charge density and

voltage in the transverse (y) direction, the expression

for _(x,y), the space-charge voltage, and p(x,y), the

space-charge density, can be written correctly at the

points i,j in the following manner:

and

K-1

_i,j =_ Ui,k c°s 2_k Yb-_

k=0

(4-1)

where

K-1

Pi,j =_ Pi,k cos

k=O

b

and

2ZUi,k = K _i,j cos 2_k yjb (4-3)

Yj

Pi,k K Pi,J cos 2_k _ (4-4)

YJ

for k_0 and k_24, where K = total number of mesh points

D

in the transverse direction; U i k and p_ k are the Fourier
3 3

transforms of _l,J and Pi,J' respectively; y-direction is
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Fourier-analyzed, and each Fourier harmonic is associated

with the appropriate value of k; and the yj's refer to the

y-coordinates of the centroids of the various rectangles.

For k=O and k=24, the right hand sides of Eqs. 4-3 and

4-4 are divided by 2. By substituting the following identity*

in Poisson's difference equation

_i,j+i + _i,j-1 - 2_i, j = -_4Ui, k
k

sin2_k _ cos 2_k yj (4-5)
b '

the following is obtained:

Ui+1, k + Ui_1, k - (2+4_ 2 sin2_k _) Ui,k

where

2 q_ _ Yj
= - K _ _O _-_ N(xl,yj) COS 2_k _-

YJ

, (_,-6)

X = ax/±y , (4-6a)

_,(xi,y j) = q_ x _(xl,yj)/(_x)2 (_-_b)

_i J =_ Ui, cos 27rk(yj 1+AY)/b
' k k

is used for deriving Eq. 4-5.
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and N(xi,Y j) = total number of ions-mlnus-electrons in

the i-jth rectangle with its centrold at (x_,yj) and

q_ is the charge per unit length. By substituting for

q_/e ° from Eq. 4-56 in Eq. 4-6, the following is obtained:

Ui+l, k + Ui_I, k - (2+4X 2 sin2_k A-_b) Ui, k

_2L2 y

l_l_2 a _p__ Z N(xi'YJ) cos 2_k _-
2X

=-_N 7 n

Yj

,

where _ = accel-decel grids spacing, L = ion source-accel

grid spacing, a = width of the ion beam in the transverse

direction in the half period, N = total number of ions in

the half period and in the spacing between the accel and

decel grids when drifting at the injection velocity, _p =

plasma frequency of electrons with N electrons in the

half period and in the spacing between the accel and decel

grids, and _ = absolute ratio of charge to mass of an

electron. By defining a new dimensionless space-charge

voltage V by

where

vi,j = xi,k
k

Y_
cos 2vk (4-8)

b

8 lax) 2 2
_0

(_p At!2_ Vi'j ,
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and At = time step used for updating of the charged

particles, Eq. 4-7 is reduced to the following equation:

Xi_1, k + Xi+1, k - (4-2 cos 27rkab-,v-)xi, k

= q _(_i,Yj) cos 2_kYJb ' (4-10)

for k_O and k_24. The expression for q , the normalized

dimensionless charge per unit length, is given by

2

* _ (_--11)

Derivation of Eq. 4-9 is discussed in Section IV.G and

_2L2

_o = _ -P----n
(4-12)

derived in Section IV.I is used in deriving Eq. 4-10.

The advantage of the potential normalization given by

Eq. 4-9 becomes evident from the expressions for the

normalized trajectory equations derived in Section IV.G.

Equation 4-10 is the normalized Poisson's difference

equation. The normalized space-charge harmonic voltage

for the kth harmonic Is evaluated by using newly developed

methods described In the following sections of this report.

It may be mentioned again that for k=O and k=24, the right

hand side of Eq. 4-10 is divided by 2.
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In general, the total number of space-charge harmonic

potentials to be evaluated is equal to the total number of

the grid points in each period. It is necessary to solve

for (K/2)+i cosine harmonics and (K/2)-I sine harmonics.

Because the condition of symmetry assumed in this case,

all the sine harmonics are identically equal to zero; thus

it is necessary to evaluate only (K/2)+i cosine harmonics.

Once the harmonic space charge potentials are evaluated

by using Eq. 4-10, the actual space-charge voltage dis-

tribution is obtained by using Eqs. 4-8 and 4-9. It may

be noticed that the evaluation of the Fourier space-charge

harmonics and the use of Eq. 4-8 involve a considerable

number of multiplications and additions; evaluation of

cosines of several arguments_ depending upon the various

combinations of the values of k and yj, is also required.

The use of a systematic procedure referred to as "grouping",

reduces considerably the computer time necessary for this

purpose and makes this method much more attractive than

others for solving voltage d_stributlon. The summation

on the right hand side of Eq. 4-10 is also made by using

the grouping technique described in detail in the fifth

quarterly report.

The only error in this method is due to the writing

of the Poisson's differential equation in the difference

_'orm. For common problems the contributions f:,om the
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higher order derivatives are very small, and thus the

solution of the Poisson's equation obtained is quite

accurate. This is described in detail in Section IV.I.

An alternate method for developing Polsson's dif-

ference equation for each harmonic is substituting Eq.

4-i directly in Poisson's differential equation. In

this case it is necessary to consider an infinitely

large number of Fourier harmonics, although the con-

tributions from the higher-order harmonics are consider-

ably reduced, and only a limited number of harmonics may

be considered for most practical problems. In this case

Poisson's differential equation is reduced to the follow-

ing equation:

- Ui k - w-k (sin _-k _b-_)
dx 2 , eo(AX) 2

Yj

N(xi,Yj) cos 2_k yjb (4-13)

a__F (i,k) (4-13a)

Equation %-13a may be written as a system of simultaneous

linear equations:

dG 2_k

dx b
a : F(i,k) (4-14a)
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and

dU 2_k
d-7 + --if- U -- G, (4-14b)

where U's and G's are functions of i and k, which are

omitted here for convenience. For a given value of G

at one of the boundaries, G's are evaluated at the var-

ious mesh points by integrating Eq. 4-14a from one boundary

to the other. U's are then evaluated at the various mesh

points by integrating Eq. 4-14b from the second boundary

to the first boundary. This method is described here as

the "marching method" and is discussed in detail in

Section IV E. It is necessary to choose the negative

signs for the second term on the left hand side of Bq. _-14a

so that there is no accumulation of error; in this

manner any error developed at one stage attenuates in

the process of integration (marching). If Eqs. 4-14a and

4-14b are solved by uslng difference equations it is

necessary to use a weighting factor with Ax and then

by appropriate manipulation, evaluate the value of the

weighting factor. It turns out that the net result ls

equivalent to an integration of the differential equation.

In the case that the weighting factor mentioned above

is not taken into account, it can be shown that the

Jr

truncation error involved is proportional to (kAx)_/(Ay) _
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which can become quite large for large values of k. In

order to reduce this truncation error, it is necessary

to have Ax proportional to (Ay) n where n > 2. This re-

quirement corresponds to a considerably larger number

of Ax elements for a given geometrical configuration,

which greatly increases the computer time. In fact,

the introduction of the weighting factor is equivalent

to an appropriate reduction in the equivalent value of

Ax. The accuracy of the results can be further improved

by taking into account linear and higher order approxima-

tions of the function F(k,x) in the process of integration

from x i + Ax i to x i.

The error involved in using this alternate method

is in the omission of the contributions from the higher

order harmonics, while the error involved in the former

method is only in writing the Poisson's differential

equation in difference form; in that case the error comes

from omitting the higher order derivatives. For the most

common problems the error due to omission of the higher

order derivatives is quite small, and for this reason,

the former method is used in this analysis.

E. Evaluation of Space-Charge Voltag_

In general, Poisson's difference equation may be

solved by using one of the several existing methods,

but unfortunately most of the methods are very time-

consuming. The method for solving the two-dimensional
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Poisson's difference equation, discussed _n the follow-

ing pages, involves considerably less computer tlme

than other methods.

The accuracy achieved by using this method is

also good. The geometrical space of interest is divided

into two regions; the region between the accel and the

decel grids is referred to as Region I, and the reglon

to the right of the decel grid is referred to as Region

II. The one-dimensional Poisson's difference equation

given by Eq. 4-10 (for each harmonic) is solved indepen-

dently in the two regions with the appropriate boundary

conditions. As mentioned before, each period is divided

into 48 rectangles in the transverse direction. Region I

is divided into 8 rectangles along the x-axis, while

Region II is divided into i92 rectangles. These numbers

are rather arbitrary and can be increased or decreased,

depending upon the total number of particles to be con-

sidered and the available computer memory.

The cyclic reduction method 11 is quite useful and

less time-consuming in solving Eq. 4-i0, particularly

when the total number of mesh points is equal to 2n-I for

n=1, 2, 3 .... , and the potentials at the two boundaries

have a well defined relationship. When the total number

11. G. Golub and R. Hockney, Private communication.
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of mesh points is not equal to 2n-1, it is necessary

to solve the reduced number of equations by any one of

the other known methods. Moreover, it is almost impos-

sible to consider appropriately the charge enclosed in

the extreme-edge rectangles when cyclic reduction method

is used. To do so is quite important, particularly when

one of the boundaries is an emitting surface; if not done,

the results can be erroneous, particularly when the charge

near the emitting surface is not accounted for in an ap-

propriate manner. For these reasons, Gauss's elimination

method has been used in solving Eq. h-10 in Region I.

This method is quite flexible and the number of the mesh

points in Region I can be changed arbitrarily with little

change in the subroutine. The charge enclosed in the

meshes near the boundaries is appropriately taken into

account, and the electric fields are interpolated to

update the particles enclosed in these meshes. For Region

II, Eq. 4-10 is solved by a method referred to as the

"marching method". This is discussed in detail in the

following sections.

i. Region I

By using suffixes I/2, 1, 2, 3, _ .... 8 and

8+i/2, 9, 9+I/2, 10, 11 .... for the accel grid, mesh

points, and decel grid, as shown in Fig. 4-3, Poisson's

difference equation may be written as
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+ Xi+I, k - (4-2 cos 2_rk_) Xi, k

= q N(xi,Y j), cos 2_k yjb (4-15)

Yj

for i -_ 2,3, .... 7, where Xi, k is the kth Fourier

harmonic space-charge voltage. The space-charge voltages

at points designated by suffixes 1/2, i, and 2 are related

by the Taylor's series expansion as

, 2 ,,

Xi/2 = X1 Ax Xl + ½ [_] X 1 - (4-!6a)
o ° , , •

and

, i (ax)2X 2 =_ X I + Ax X I +

TT

X I + .... (_-16b)

By combining Eqs. a-16a and 4-16b, the following equation

H

for X I is obtained:

,, _4IX2* 2Xi/2 - 3Xi}Xt ::--7t (aX)2 (_-17)

Since the electr.lc field is normal to the grid, there is

no change in writing the second derivative with respect

to y in Polsson's differential equation in difference
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forM.

TT

By substituting for X I from Eq. 4-17 in the two-

dimensional Poisson's differential equation, and then

reducing it to a one-dimensional equation (as Eq. 4-10),

the following is obtained:

2xi/2,k + x2, k - 1.5(3 - cos 2_k a-_b)Xl, k

Yj

Preceeding in a similar manner, the difference equations

for the other two end half rectangles (as shown by cross

hatched areas in Fig. 4-3) are given by;

2X8+I/2, k + X7, k - 1.5(3 - cos 2_k &-_b) X8, k

and

3 q*:_ _ N(xs,yJ)oo_2_kL_b
Yj

(4-_9)

2X8+I/2, k + Xlo,k - 1.5(3 - cos 2_k Ab-_) X9, k

3 q*

Yj

(4-20)
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Equation 4-20 is helpful in solving Poisson's difference

equation in l_egion Ii, as discussed in the next section.

Equations 4-15, 4-18 and 4-19 form a set of equations

needed to solve for the Xi,k'S in Region I by Gauss's

elimination method. For k=0 and k=24, it is necessary

to divide the right hand sides of these equations by 2,

as discussed previously. The details of Gauss's elimina-

tion method can be obtained In any standard book on

numerical analysis (for example, Scarboroughl2). The

execution of the computer program written for this purpose

is almost as fast as that for the cyclic reduction method.

2. Region ii

For space-charge voltage evaluation in Region II,

Eq. 4-10 is factorized to give the following two equations:

 i*i/2,k-   i-l/2,kq N( i'Yj)cos
Yj

and

(4-21)

Xi'k (_-22)
Xi+l,k = _ + _i+1/2,k '

where _ is the larger root of the algebraic equation

given by

12. Scarborough, J.B., Numerical Mathematical Analysis,

The Johns Hopkins Press, Baltimore; 1955.
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_2 _ 2(2 - cos 2_k Ab-_) _ + i = 0

i.eo#

: 2 - cos 2_k Ay + 2 - cos 2_k ) - i
b (4-24)

Equation 4-21 is solved by starting at the maximum value

of i (farthest position of the charged particle from the

decel grid) and marching towards the decel grid. Equa-

tion 4-22 is solved by starting at the decel grld and

marching towards the maximum value of i; the values of

@i+i/2's evaluated from Eq. 4-21 are used in solving

Eq. 4-22. This explains why the larger value of the root

of Eq. %-23 is used in Eqs. 4-21 and 4-22; in this way

any error introduced at any stage is attenuated depending

upon the value of _ (which in turn depends upon the value

of k). If the smaller root is used, any error introduced

at one stage will grow depending upon the value of _.

This can cause a considerable accumulation of error, lead-

ing to erroneous results. Equation 4-21 can be rewritten

in the following form:

* F Yj

_i+I/2,k-q _ N(xi,Y j) cos 2mk _--

 i-I/2,k - (4-25)
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For k=O, _=i, and for k > O, _ > i: k in this case is

always _ 24. For larger distances from the decel grid, i.e.,

for x --_ _ there is no charge and N(xi,Yj)=O; this assumes

that either the beam is completely neutralized at sufficient-

ly large distances away from the decel grid under steady-

state conditions, or there is no charge beyond i undermax

transient-state conditions. Furthermore, for x --_ _

there are no transverse variations in the space-charge

voltage, and thus Xi,k=O for k > O_ for k=O, Xi+ I = Xi (the

gradient of the potential = 0), and thus _I+1/2,k=0 for

all values of k and x --_ _. The advantage of factorlzation

of Eq. 4-LO into Eqs. 4-21 and 4-22 is now evident, be-

cause the space conditions are easily simulated in the

model considered here. Thls means that the boundary

condition at x --_ _ has been simulated indirectly at the

position of the charged particle farthest from the decel

grid; of course, the two field components need not be

zero at this location. In this method _'s are evaluated

at the boundaries of the meshes, while X's are evaluated

at the centers of the meshes. In the former case one

marches towards the decel grid, and in the latter case

one marches away from the decel grid: hence, the name

'_marching method" is used for this method. In order to

account properly for the contributions of the charge

enclosed in the end half _ctan_±_s on the right hand
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side of the decel grid (shown In Fig. 4-3), Eq. 4-20

Is also used in evaluating space-charge voltage dis-

trlbution in Region II. For this purpose, it is assumed

that the decel grid is at zero potential. Actually,

potential at x m _ is equal to zero, which shifts the

origin; this is discussed in Section IV.E. 4. Combining

Eqs. 4-20 and 4-25 with the condition Xi+l/2 = 0,

-g q N(x9,yj) cos 2_k-_ + _9+1/2,k

Yi
1 . (4-26)X9,k A_r,

1.5 (3 - cos 2_k _) - F

After X9, k is evaluated, the potentials XI, k for i>9 are

evaluated by using Eq. 4-22.

3. Inclusion of the DC Terms in Field Computations

It has been mentioned before that there is a

dc voltage across the two grids, and its presence is mainly

to avoid any crossing of electrons towards the ion source.

It becomes necessary to take into account the contributions

from the dc field also in the updating of the particle

positions from one time step to the next time step. If

this is accounted for separately, it is necessary to test

the region of location of each particle and then add the

appropriate contribution. The logic and computer time

involved are then increased. It has been found convenient

to take into account the dc potential as an equivalent
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charge in the Poisson's difference equation for the

zeroth harmonic. Since the decel grld is assumed to be

at zero potential• the potential at the accel grld Is

then equal to -_d" Uslng Eq. 4-9, the potential X1/2

at the accel grid is given by

X1/2

By substituting for X1/2 from Eq. 4-27 lnto Ec. 4-18 for

k=0, and dividing the right hand slde of Eq. _-18 by

2, the following is obtained:

2

-3X1, O + X2, 0 _{ _N(Xl,Yj) - (_pat) 2
_d

Yj

• (4-28)

where 9d/_o > O. In this manner the complete voltage

distribution (from dc and space-charge effects) is

evaluated in Region I; there is no contribution from dc

voltage in Region II.

The consideration of the decel grid at a zero

potential shifts the origin of the potential distribution,

but this does not effect the particle trajectories. This

makes the potential at X --e_ equal to X i , which
max

varies with time depending upon the space-charge dis-

tribution. Thus in the actual case the decel grid is

at a floating potential equal to -X. when referred
lmax,t

to potential at infinity; for perfect space-charge
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neutralization Ximax,o should be equal to zero

4. Evaluation of Ship Potential

In evaluating the potential distribution,

described in Section IV.E. the decel grld is assumed

to be at zero potential. While the electrons and Ions

are traced only up to x=200 plane, It is assumed that

the beam beyond x=200 Is completely neutralized. Thls

means that the potential distribution is a function of

the charge distribution only in the region under con-

sideration. The zeroth harmonic voltage beyond x=200

(x-coordinate value of the farthest charged particle

away from the decel grld under initial observation)

does not change while the higher order harmonic voltages

attenuate depending upon the value of the harmonic.

This means that the potential at x ----, _ is equal to

the value of the zeroth harmonic voltage at x=200

(or the x-coordlnate value of the farthest charged

particle away from the decel grld under initial observ-

ation), referred to here as Ximax . Since the potential
,O

at infinity is equal to zero, the potential at the decel

grid is equal to -X i
max, o

F. Interpolation of Fields Near the Grids

The solution of Poisson's difference equation, as

discussed in the above sections, gives the voltage
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distribution at the centroids of the various meshes.

The expressions for the electric fields acting upon

the various charged particles located in the various

rectangles are derived in Section IV.G. However, for

the charged particles located in rectangles close to

the accel and decel grids, it is necessary to interpo-

late potentials at points located along planes x=x
a'

X=Xb, x=x c shown in Fig. 4-3. From these potentials,

the general formulas for evaluation of fields discussed

in the next section can be used, except that in this

case the mesh size is reduced by a factor of 2. The

voltages Va, j may be written in a Taylor's series form

as

- 2
- V3 j+Vl'j 2V2'j lV3'j VI"J Ax + ' _.

Va'j = V2'j - 2Ax -2- (Ax) 2 21_I "

(4-29)

(4-29a)

where the higher-order derivatives are neglected in

writing Eq. 4-29a from Eq. 4-29. Similarly, the ex-

pressions for Vb, j and Vc, j are given by

Vb, j = _ V9,j + Vln J - _ V11 j
(4-3o)
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and

1

Vc,j --- v6,j

Thus, the fields evaluated for the charged particles

enclosed in rectangles close to the two grids are com-

puted more accurately; this is important, because there

can be considerable space-charge in the vicinity of these

grids, particularly near the decel grid.

Go Trajectory Equations

The equations of motion of an electron are given by

= _ _ExT = _ 8_{x.V)_x (4_32)

and

= - _EyT= _y , (4-33)

and the equations of motion of an ion are given by

_{x,v) (4-34)

and

a (x,y) (4-35)
7= - _ _y

where _ = absolute ratio of electron charge to its

mass and m/M = ratio of electron mass to ion mass.
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Equation 4-32 may be written in the difference form

given by

Xn+l Xn xn-1 (28V(x,y) )ax - 2 Z-_ + ax - ax/ax
n

(4-36)

where Eqs. 4-9 and 4-12 are used in deriving Eq. 4-36

and suffixes n-l, n, and n+1 correspond to various time

intervals. Similarly, the other trajectory equation is

written as

Yn Yn-1 ( 2 8V(x,Y) )
Yn+____!i_ 2 + - (4-37)
ay Z7 ay _y/ay

n

The corresponding equations for ions are given by

! %

Xn+l Xn Xn-i m _ 2 _(x,.v)

ax - 2 _-_ + Ax - M 1 _x/Ax } (4-38)

n

and

Yn Yn-i m ( 2 _V(x,y))
Yn+l 2 + - --
ay a-y Ay M ay/ay (4-39 )

n

 (YnI-AtYn-I i7 l-ZTl (a--a.o)
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where A(Yn/Ay ) = (Yn+l - Yn )/Ay" The expressions for

the electric fields at (x,y), may be written down from

the Taylor's series expansion in the neighborhood of

(xi,Yi) and are given by

x xi
x,y i,J

i,J

Ay YJ- _ ax/_ _y/_y I

i,J

(4-41)

and

(aV av _
)x,y i,J

i,J

+ _ - _ Sx/Ax ay/Ay (4-42)

l,J

1 1 1 1where x i - _ < x < xI + _ and yj - _ < y < yj + _.

The first and second order derivatives of potential

are evaluated at the point (xi,Yj) , the centroid of the

rectangle. These derivatives may be written as
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_V ) Vi+l'J - Vi-l'J (4-43)

i,j

_V ) Vi']+1 - Vi'j-I (4-44)

i,j

_(x/_x)_ --Vi-l,j - 2vl,j + vi+1,j , (4-45)

i,j

8(y/Ay)2 = Vi,j_ I - 2Vi, j + Vi,j+ I , (4-46)

i,J

and

i,j

Vi+l..1+l - Vi+l,,1-1 - Vi-l, J+l +Vi-l, J-i

4

(4-47)

For the present problom (as noticed from the results of the one-

d_mensional analys_s and the results given in Section V and VI),

the total number of electrons is larger than the total number of

ions; this illustrates the advantage of defining the normalized

voltage V(x,y), as given by Eq. 4-9. (The total number of elec-

trons is larger than the total number of ions because, in general,

more electrons are needed for appropriate space-charge neutraliza-

tion, the excessive electrons are absorbed by the electron emitter.)

This involves minimum n_mber of computations and, hence, minimum



computer time. The electric fields used for updating of the

charged particles are evaluated by using Eqs. 4-41 through

4-47; thus the results given in the next section are

quite accurate.

H. Normalization of the Various Parameters and

Injection Conditions

The trajectory equations derived in the above section

are normalized so as to yield accurate results within min-

imum computer time. In order to evaluate V, it is necessary

to determine the value of _ At and derive some equations
P

which have been used in obtaining the various normalized

equations in the previous sections. It has been mentioned

before that ions cross the accel grid at a constant velocity

and with an energy equivalent to e_ ° electron volts. Assum-

ing the validity of Child's law in the region between the ion

source and the accel grid (space-charge-limited conditions),

the relation between the current density J and potential

©o is given by

(_-_8 )

The space-charge density Po of the ion beam is given by

J J (MIIJ2
Po - u° _o m , (4-49)
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where uo -- ion exit velocity at the accel grid.

inating J from Eqs. 4-48 and 4-49,

Elim-

4 _o

. (4-50)

2 A Po
_p = n _- (4-51)

o

The parameter Ni, the number of ions emitted across the

decel grid per unit time is given by

J a_pAt (4-52)
N i = _p q_

where a = ion beam width (in the upper half period when

N i is taken as the number of ions emitted per unit-time

interval in the upper half period also). In order to

simulate the total ion beam, ions are emitted at several

points (0.2 Ax apart) located in the range o<y<a along

x=O axis; this insures that the ion beam will be well

represented by the sample of ion trajectories. The
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parameter N, the total number of ions within the region

between the two grids, if drifted at the injected velo-

city uo, is given by

N __N i
" U O _pAt

By combining Eqs. 4-52 and 4-53 the following is obtained:

_) 1/2 1_!_ _ (4-54)
_pAt 3L

where Eq. 4-12 is used in deriving Eq. 4-54. In an

actual case, the ions experience a decelerating force

in the region o<x/_<l. The total number of ions in this

region is greater than N_ however, N/N i is a useful para-

meter in making a rough estimate for the total number of

particles to be considered for a given value of N, this

depends upon the values of _pAt and the maximum number

of time steps to be used in the problem. Furthermore,

the space-charge density Po derived in Eq,. 4-50 can be
C

written as

. Nq_ (4-55)
Po _a

or
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2 _ 2L2

co Nc o = N _LJ _
(4-56)

where Eq. 4-51 is used in deriving Eq. 4-56. This

equation was used in deriving Eq. 4-7.

I. Injection Conditions

It has been mentioned in Section IV.C. that ions

are injected across the plane x=0 at a velocity cor-

responding to the accel grid potential. Thus, the x-

component ion-injection velocity is given by

(4-57)xi, ° = _2_ _o

where _o = potential difference between ion source and

the accel grid. The y-component of velocity of the

injected ions is assumed to be zero. The electrons

are emitted with random emission velocities correspond-

ing to the Maxwellian velocity distribution. The

number and emission time of the electrons emitted per

unit time are kept constant during a specific computer

run. The normalized electron velocity distribution

with velocities xi and #i (x<xi <_+d_' Y<Yi <_+d_) is

given by
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m_:2 _ my 2

f(v) = _m _: e 2kT e 2kT d_: d# , (4-58)

where the x- and y-velocity components correspond to

the geometrical configuration used in this analysis, i.e.,

x- and y-components, normal and parallel to the two grids,

respectively.

The distribution function f(v) may be separated to

give the x- and y-components distribution functions as

.2
mx

f(_) m 2kT= _-_ x e dx (4-59)

and

V "-" ""
(4-6o)

Equations A-59 and 4-60 may be solved to give the two

random velocity components by the following two equations:

_: =-_ (- ,_n. R)l/2

and

Inverse <err(G)> , (4-62)

where R and G are random numbers lying between 0 and i.

The inverse erf(G) corresponds to the following equations:
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erf(U) = G , (4-63)

and

U = Inverse erf(G) , (4-84)

l.e, random U is evaluated from the random generated

number G by using Eq• 4-64, and erf(G) is the error

function of the argument G• This corresponds to an

evaluation of erf(U) for several numbers and storing of

this information in the computer• G's, the randomly

generated numbers are then matched wlth the stored

numbers to give U. The plus and minus signs in Eq. 4-62

are also added to the y-component velocity in a random

manne r.

The normalized expressions for
e,p

the emitted electrons are given by

and Ye,p of

= __/TT-- -_(_ _n R) 1/2
xl, o VIeI _o

(4-65)

and

YX--_o = + ei_o Inverse erf(G)) ,
(4-66)

where Xi,o refers to the ion .injection velocity at the

plane x=O, and Xe,p and Ye,p refer to the two velocity
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components of an electron emitted at the pth time interval.

J. Evaluation of Thrust

The thrust on a ship is caused by electrostatic forces

on the two conducting grids. The expression for T, the thrust

per unit area on a conducting plane, is given by

qs Eri_ht + Eleft
T. -

g 2
(4-67)

where qs = charge per unit area, g = weight-to-mass ratio,

Eright and Eleft are the normal electric fields on the two

sides of the conducting plane, and division by 2 is made to

take the average value of the field. From Maxwell equa-

tions the surface charge qs is given by

qs = - eo(Eright - Eleft) (4-68)

By using Eqs. 4-67 and 4-68, the following is obtained:

c° [ 2 - E 2 ]T = _ Eleft right (4-69)

For the two conducting grids the expression T. is given by
J

eo [E2 _ E 2 2 2 ] (4-70)Tj = 2-_ 4,j 3,j + E2,j - EI,J '

where suffix j refers to a particular rectangle in the transverse

direction and El, E2, E 3 and E 4 are the fields on the two sides

of the two grids, as indicated in Fig. 4-4. Under ideal con-

ditions El, j = O,
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and

E 5 = E 2 = - _ I - _oo

Thus, the ideal value of T , the thrust per unit area, is given

by

@

The normalized value of T with respect to T is then given by

The average value of T, the normalized thrust, Is then given by

L [E 27 Z .,j 3,J + E2_ J ,J '

where summation over J refers to summing over the appropriate

sums for the various rectangles in the transverse direction in

the half period onIz and a division by b/2Ay is made to obtain

the average value of the normalized thrust. Since the con-

tributions due to dc fields have been taken into account by

adding an equivalent charge, as indicated in Eq. 4-28, the

evaluation of E's In Eq. 4-75 corresponds to contribution from

both dc fields and space-charge fields. Using Eqs. 4-71 and

the definition of V given by Eq. 4-9, the following is obtained:
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(_pat)4 3 I

where suffixes 1, 2, and 3 refer to the corresponding suffixes

for E's defined earlier and suffix i with V's is omitted for

convenience. In each rectangle the contributions in evaluating

Eq. _-41 for y-yj > o will cancel with those for y-yj < o. The

value of (x/Ax - xi/Ax ) for the grids is equal to 1/2, and thus

the fields used in Eq. 4-76 are given by

I = - V + 4V I + 3_I (4-77)
_v

$-_3 a

I = - Vb + 4V9
8v

(4-78I

and

=vc4v8 (_-79)

where

12--_i3L)2($_2A_xi _d=_ (mpAt)2 1 (I_-80)
2 _o

and is derived by using Eq. 4-9. The value of _d/_o is taken

as positive. In the derivation of fields as given by Eqs. 4-77,
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4-78, and 4-79, only linear terms are included, which is

quite reasonable. By substituting for fields as given by

Eqs. 4-77 through 4-80, the expression for thrust is given by

T j

_L

(00pAt)4
(- va + 4vi + 3_I)2

+ (- vb + 4v9)2

For an ideal case, when there is complete space-charge neutral-

ization (_V/_x/Ax)i , which is the middle term within parenthesis

on the right hand side of Eq. 4-81, is equal to zero. Under

these conditions

(- va + 4vi + 3_i) = (vc - 4v8) (4-82)

and an ideal thrust is produced on the ship.
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Definition of Symbols used in Two-Dimensional Confisuration

width of the ion beam (in half period) at the accel grid

plane

length of period in the transverse direction

y-coordinate of the lower edge of the electron emitter

y-coordinate of the upper edge of the electron emitter

total x-component electric field

total y-component electric field

charge of an ion

random number associated with y-component electron velocity

weight-to-mass ratio

ion current density at the accel grid plane

total number of rectangles in the half period (along the y-axis)

Boltzman constant multiplied by electron emitter temperature
in °K

order of harmonic, k=0, I, 2, ........ , 2_

ion gun-accel grid spacing

distance of the shelf (beam-plasma boundary) from the accel

grid

accel-decel grids spacing

ion mass

electron mass

total number of ions in the region between the accel and

decel grids, when drifting at the injection velocity

total number of ions-minus-electrons in the i-Jth rectangle

number of electrons emitted per unit time interval

number of ions injected across the accel grid in a unit
time interval

normalized charge per unit length

line charge per unit length

surface charge per unit area

random number associated with x-component electron velocity

thrust per unit area

ideal thrust per unit area

Ui, k kth harmonic of _i_j
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u ° ion velocity at the accel grld plane

Vi, j normalized potential corresponding to _i,J

X (unlts) normalized x distance

Xi, k kth harmonic of Vi, j

x-component of electron velocity emitted at the pth time
e,p interval

xi x-component of the ion injection velocity
_O

xn x-coordinate of a particle at nth tlme step

Y (units) normalized y distance

y-component of electron velocity emitted at the pth time
Ye,p interval

Yn y-coordlnate of a particle at nth time step

larger root of the algebraic equation given by Eq. _-23

at unlt time interval

Ax spacing between two consecutive centrolds along the x-axls

Ay spacing between two consecutive centroids along the y-axls

c free space permittivityo

absolute value of the ratio of electron charge to its mass

_x/_y

kD Debye length

_o ion space-charge density at the accel grld plane

Pi,J space-charge density at the l-jth centroid

Pi,k kth harmonic of Pi,j

_ summation

_o accel grld potential

_! normalized value of _d

'_d potential difference between the accel and decel grids

_i,j actual potential at the i-Jth centroid

_/_o normalized shlp potential

_i_l,/2,k kth harmonic of a quantity analogus to field

_p electron plasma radian frequency
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V. RESULTS OF TWO-DIMENSIONAL ELECTRON-ION MIXING

A. Considerations in Computer Simulation

Because of the enormity of the two-dimensional prob-

lem,it was found necessary to consider computer efficiency

and storage in simulating the problem on the computer.

While efficiency in computer time has been appreciably

improved by using new techniques, the limited computer

memory restricts the tracking of the charged particles to

somewhat shorter distances from the decel grid, as compared

to those possible in the one-dimensional model. In select-

ing the size of each mesh, it is necessary that the space-

charge fields be resolved within a Debye length. From the

results of the one-dimensional analysis it appears that

adequate space-charge neutralization occurs within short

distances from the decel grid; this makes it convenient

to specify, within computer limitations, the distance be-

yond the decel grid which may be desirable for tracking

the charged particles. Based on these considerations, the

total number of rectangles (meshes) in the transverse dir-

ection in each period was taken as 48 (because of symmetry,

only half of the period was analyzed). There are eight

rectangles between the two grids and 192 rectangles beyond

the decel grid. Such a division has yielded a fairly _ood

resolution, and adequate space-charge neutralization seems
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to occur within the region studied.

Because of computer memory limitations, relatively

few locations were left to store the coordinates of the

particles, and it was considered necessary to pack the

x- and y-coordlnates of each particle In a single com-

puter word. This arrangement restricted the range of

mass ratios which could be used, because heavy ions ex-

perience space-charge forces which cannot be specified

within the number of decimal places allowed. Nevertheless,

a comparison of data for several mass ratios has enabled

us to extrapolate the results for hlgh mass ratios. The

necessity for increasing the value of the normalized

charge for achieving maximum possible accuracy Is explained

In the next few sections. All the subroutines used in the

main program were checked independently against several

test cases.

B. Choice of Parameters

Because of the several computer limitations described

in Section A, considerations of Debye length and applica-

tion of the results to practical cases, etc., It was con-

sidered important to optimize the various parameters, such

as ion and electron injection currents and velocities, ion

beam width, electron emission ratio, etc. As mentioned in

SectionV.A,the accuracy in the decimal parts of the x- and

y-coordinates of a particle are limited; this made it
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necessary to consider larger values of the normalized charge

to make the space-charge forces more applicable. For small

values of the normalized charge, the space-charge forces

may not be large enough to show any ion-beam spreading (as

noticed from the plots in the next section), particularly when

the value of the Ion-mass ratio is increased. However, due to

this change, the value of the unit-time interval is also in-

creased, causing the particles to move very rapidly during one

interval. Thus, it is important to make a compromise so that

accuracy in results is not impaired. (It may be mentioned here,

however, that in every case the results were in good agreement

with the results of several test cases simulated for checking

accuracy.) Moreover, with increased value of the unit-tlme

interval, the electrons, particularly those with high initial

velocities, move a considerable distance in the first unlt-time

interval; in some cases this may even cause some electrons to

travel to the accel grid. This effect is more pronounced, es-

pecially for small values of ion-mass ratio, when the value of

the dc voltage between the two grids is small. For this reason,

a modification, successfully used by Berger 13, was used for

the initially emitted electrons: the trajectory equations for

such an electron are given by the following:

_3. Berger, P., Stanford University. Private communication.
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and

x - xo = x o At + Im 122 (5-1)

i }o + }ob- 12 (5-2)
Y - YO - 2 2 ,

where suffix o refers to the initial time. The deriva-

tion of these equations assumes that electrons are

emitted continuously rather than at discrete time inter-

vals. These trajectory equations are also used in the

normalized form as discussed in Section IV.

The total number of binary bits in a 36-bit IBM 7094

word is most efficiently used; the first 18 bits are used

to store the y-coordinate, while the last 18 bits are

used to store the x-coordinate. These coordinates are

stored in fixed point mode, which makes it necessary to

use a combination of fixed and floating point modes in

the computer program, since most of the program is in

floating point words.

C. Variation with lon Mass Ratio

After the optimization of the various parameters

and the modifications mentioned in the last section were

incorporated, the electron-ion mixing mechanism was studied

for three values of mass ratio. This study made it poss-

ible to extrapolate the results to the actual values of

the mass ratio, as described in Section V.G. The various
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Input parameters and calculated constants for the three

cases described in thls section are given in Table 5-1.

Table 5-I

Input Parameters and Calculated Constants

Run No.

3B

2E

4A

H/m

64

144

256

2.25

1.5

i. 125

e_ o

kT

6.4

14.4

25.6

Ni N

3 90

H T!

H fT

-o. 88

-o.39

-0.22

0.2822

1T

q.-X-

xl0-_

1.777

TT

V R D

L_x

k D = Debye length (defined by Eq. 5-3), _ = _pAt (defined

by Eq. 4-54), q* = normalized dimensionless charge per unit

length (defined by Eq. 4-11), v R = ratio of the average

electron emission velocity to the ion exit velocity

(defined by Eq. 5-4), and C = normalization constant

for potential (defined by Eq. 4-9). The run numbers (2E,

3B, 4A) are used here merely for reference purposes. The

variations in _/L and e_o/kT , as mentioned above, were

necessary to maintain identical conditions in all the

three cases (except M/m). In all the cases mentioned in

Table 5-1, a/_ = 0.75 (defined by Eq. 4-52), _d/_o = 0.25

(defined in Section IV.E.3), Ne/N i = 4, and the absorption

ratio = 1/4, where Ne and N i represent the number of
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electrons and ions emitted per unit time interval,

respectively, and the absorption ratio is defined as

the number of electrons absorbed over the number of

electrons crossing the decel grid above the ion beam.

In all cases _/Ax=8. The other parameters are defined

in Section IV.H. The expression for _D/Ax is given by

the following equation:

where v = average electron velocity; Eq. 4_12 is used

in deriving Eq. 5-3. It is assumed that the presence of

ions does nob significantly change the plasma frequency

of the system. The expression for vR in Table 5T1 is

given by the following equation:

VR -%/'_ i 1/2

[_ kT M i ]I_ e_ ° m (1- _1)

_o

1/2
(5.4)
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Ions are injected across the plane x=O, 0.2 Ay

apart, between 0 and 5.8 Ay, and electrons are emitted

with random initial velocity components at the plane

x=8 from points 0.2 Ay apart between 6 and 10 Ay. One

particle for every 26 particles was selected for tra-

Jectory plotting purposes. Figures 5,1 through 5-3 show

the trajectories of typical ions in the x-y space for

the three cases mentioned in Table 5-1. Because of the

symmetry across y=0 (and y=24) the movement of particles

from one half period to the other half period may easily

be seen in the plots in Figs. 5-I through 5-3. The ion-

beam spreading for the three cases is compared in Table

5-2.

Table 5-2

Variation of _on-Beam Spread with _on _ss

Run No.

2E

2F

4A

2.25

2.25

4

4

2

4

2.19

2.32

4.35

M s refers to the mass of an ion with an ion-electron

mass ratio of 64; the cases of different values of mass

ratio are compared with respect to the case of M/m=64.

The ratio el/_ 2 is a measure of the ion-beam spread
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(_i and _2 are defined in Fig. 5-/$). Run 2F, where

electron emission has been reduced (as compared to

that in Run 2E) is discussed in detail in the next

section. It may be noticed that the ion-beam spread

is inversely proportional to the ion mass, and, for the

case of reduced electron emission, the ion beam spread

is slightly increased. The transverse movement of ions,

as seen in Figs. 5-i through 5-3, is caused by their own

space-charge, which is partially neutralized by electrons.

Beyond some value of x (different for each case), no fur-

ther transverse bending of ions occurs, which may be due

either to small ion density or adequate space-charge

neutralization; a close comparison of the trajectory plots

does seem to favor the second explanation.

Figure 5-5 shows the typical ion trajectories (x vs.

t) for the case of M/m=144. The ions experience straight

line movement, except for some initial deceleration due

to the decel voltage, indicated by slight bending of the

ion beam in the range O<x<8. The initially emitted ions

experience slight acceleration due to a finite attraction

by several electrons. The initial injection velocity and

decel voltage are kept constant in all the three cases

described in Table 5-i; the trajectories for the other two

cases are found to be identical, except that the acceler-

atio_ of the initially emitted ions is increased for the
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case of M/m=6_J and decreased for the case of M/m=256;

this is due to change in ion mass. Figure 5-6 shows the

typical electron trajectories in the x-._ space for the

entire i'un. It is interestin_ to note that the complete

decel _rid forms a virtual electron emitter, although

electrons are emitted from a rather narrow strip. This

is primarily due to the potential distribution in the

neighborhood of the decel grid, shown in Figs. 6-8 and

6-9. The electrons mix into the ion beam by means of

fluctuating fields which admit nearly the correct number

of elecSrons with approximately the required velocity in-

to the ion beam. This was qualitatively explained in the

sixth quarterly report l_, where the total number of elec-

trons-minus-ions reached a steady-state level with oscil-

lations at approximately electron plasma frequency. A

close examination of the electron trajectories indicates

t]__at the electrons experience oscillatory motion in the

transverse direction] an electron movin4_ towards y=O goes

into the lowe£ _ half symmetric period, and an electron

movim: away from y=O actually comes from the lower half

period. This oscillatory motion is found to be very

closely correlated with the plasma frequency oscill_tions

la. P.P. Wadhwa, "Analysis of Electron-Ion Mixing in

i.'_n !{ngines". _uarterTy Rpt. No. 6, Contract No.
i_AS 3-250_; December. 1963.
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in the transverse direction visible on the plots for a

relatively small sample of electrons in the time and

space domain, given in the sixth quarterly report 14,

although the system plasma frequency seems to be modi-

fied because of the presence of ions.

Figure 5-7 shows the envelopes for the high electron

density regions for the three cases mentioned in Table

5-1. These curves show a qualitative but comparative

illustration of electron trajectories inthe various cases;

a comparison of trajectories in Fig. 5-6 with the corres-

ponding envelope in Fig. 5-7 qualitatively indicates what

the trajectories should look like for other cases. The

location of the electron emitter is also shown in

Fig. 5-7. A comparison of electron cloud envelopes with

the ion trajectories in Figs. 5-i through 5-3 indicates

that electrons follow ions very closely. After a certain

value of x (different for three cases) which nearly

corresponds to ion moving toward y=0, the whole space

is filled with electrons. The formation of the electron

cloud envelope in the region between the two grids is

correlated with the shelf development for the one-dimen-

sional case in Section V.H.

Typical electron trajectories (x vs. time) are shown

in Figs. 5-8 and 5-9 for the cases of M/m=256 and 64,

respectively. The fast electrons moving ahead of the

beam bounce from free space, and are eventually carried

along with the ion beam. The value of vR in this case,
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as mentioned in Table 5-I, is equal to 3.61, although

the ultimate velocity of electrons seems to be very

close to that of the ions; this indicates that electrons

slow down and lose energy. Because of heavy mass of ions,

the increase in ion energy (which is gained from electrons)

is not evident from the trajectories in Fig. 5-5. For the

case of small mass ratio (M/m=64), the value of the dc

field between the two grids is small, and some of the

fast-velocity electrons do reach the accel grid, as noticed

from the plots in Fig. 5-9. These electrons will eventually

be accelerated towards the ion source. In a practical case,

the value of M/m is very high, and the turning back of

electrons, as noticed for the case of M/m=64, should not

be of any concern.

The variation of the normalized thrust as a function

of time for the two cases (M/m=64 and 256) is shown in

Fig. 5-10. In general, the variations in thrust are

small and are not detrimental to the ion engine perform-

ance. It is interesting to note that the variations for

the case of M/m=256 (heavy ion) are smaller than those for

the case of M/m=64 (lighter ion). The variations in the

thrust for the case of M/m=144 are in between those for

the cases of M/m=64 and 256; the corresponding curve is

not drawn here, because this would reduce the distinction

in the variations for the various cases. The reduction in
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thrust variations for the heavy ion seems to be due to

reduction in ion-beam spreading. For practical cases

the ion beam spreading would be very small (because of

increase in ion mass), and the thrust variations are

expected to be considerably less than those observed for

the cases studied in this section.

In general, the value of the normalized thrust is

slightly less than unity, which is probably due to the

fact that under conditions of neutralization plasma ex-

tends in the region between the two grids; the value of

IE21 (see Fig. 4-4) is thus reduced, while the value of IE31

is not changed appreciably. As noticed from the expres-

sion for the normalized thrust, such a condition would

lead to a reduction in thrust. From the curves given in

Fig. 5-10 it appears that such a condition is reached

within very few unit intervals, and the variations in

thrust are too small to be identified by electron or ion

plasma frequency oscillations.

Figure 5-11 shows the variation of the normalized

ship potential as a function of time for the three differ-

ent cases. In general, the ship potential is positive,

because more electrons have left the ship at the time when

ship potential is evaluated. As mentioned earlier, in

evaluating ship potential it is assumed that the beam

beyond x=200 is completely neutralized, so that the

effect of particles beyond x_200 is negligible.
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The ship potential and potential distribution are calculated

precisely until the particles reach x=200. When a particle

or particles reach x=200 and are written of_ the evaluation

of the ship potential in particular is no longer precise;

the neglect of these particles affects potential distribution

appreciably only in the vicinity of x=200. This discrepancy

in evaluating the ship potential is indicated by relatively

large fluctuations at large values of time.

The fluctuations in the ship potential are less for the

case of heavy ions, and, moreover, the average value of the

ship potential is closer to zero for heavy ions. These observa-

tions indicate that the fluctuations for the thrust and shlp

potential for cesium (and mercury) ions would be extremely

small. A higher degree of space-charge neutralization seems

to occur for the case of heavy ions, primarily because the

ion-beam spread is less; all the electrons are drawn into the

ion-beam instead of filling up the whole space.

D. Variation with Electron Emission

It is shown in Section 5.C that the ion beam spread is

inversely proportional to the value of the ion mass. Some

calculations for the ion beam spread without any space-charge

neutralization indicated that there was definitely adequate

space-charge neutralization in the vicinity of the decel grid.

The effect of variable electron emission on the performance

of the ion engine is compared for three different values of
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Ne/N i (these parameters are defined in Section V.C), namely,

4. 2 and 0 corresponding to Runs 2E (described in Section V.C),

2F, and 2G, respectively, while all the other variables are

maintained constant. This comparison is of interest since the

performance of the ion engine can be impaired if the electron

emission is not sufficient; it should be almost optimum. For

the case of Ne/N i = 2 the ion beam spread was slightly increased

(as mentioned in Table D-_). The envelopes for high density

electron clouds for the two cases, namely Ne/N i = _ and 2 are

shown in Fig. 5-12 which also shows the location of the electron

emitter. Because of reduced number of electrons in the second

case, the space-charge forces on electrons are reduced, and the

electrons move shorter distances from the decel grid; most of the

electrons move into the ion beam, and the qualitative behavior of

electrons away from the decel grid is similar in the two cases.

These results indicate that even this reduced electron emission

is adequate for space-charge neutralization. There seems to be

no significant difference in the other trajectories for ions

and electrons. Figures 5-13 and 5-14 show the typical ion

trajectories for the case of Ne/N i = 0 in the x-y and x-t

domains, respectively; all the other parameters are the same

as those for Run 2E mentioned in Table 5-1. It may be clearly

seen that the ions can be drawn back to the ship, when the

space-charge neutralization is not adequate and only very few

ions would be able to move into free space. A comparison of

i_7
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ion beam spread from Fig. 5-2 and 5-13 for the cases of Ne/N 1 =

and zero, respectively does indicate that adequate space-charge

neutralization seems to occur in the vicinity of the decel

grid when a sufficient number of electrons is emitted.

The bunching of the lons in Flg. 5-14 seems to be related

with the ion plasma frequency oscillations. The number of time

steps in a full plasma frequency period is equal to 267, whlle

the bunches are spaced approximately 130 steps apart. A cor-

relation of this bunching wlth thrust measurements ls indicated

in the latter part of this section.

The variation of the normalized thrust as a function of

time is shown in Fig. 5-15 for the two cases of electron

emission, namely, Ne/N i = 4, and 0, corresponding to Run

Nos. 2E, 2F and 2G, respectively. Again, as discussed in

Section V.C, the thrust Is less than the ideal value in all

these three cases. The fluctuations in thrust are somewhat

reduced as the value of Ne/N 1 is changed from 4 to 2, but the

value of thrust is also slightly decreased; actually the thrust

fluctuations for the case of Ne/N 1 = 2 are very close to those

for the case of Ne/N 1, and only one curve is shown in Flg. 5-15

because the superposition of the two curves reduces the dis-

tinction between the two curves. A deterioration in thrust

is clearly noticeable for Ne/N i = 0; the thrust deteriorates

very fast, reaches a minimum value, and then oscillates between

_w_._ _1...._ (each level _____I_ _s1_ than _)_._ . This
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oscillation frequency is approximately equal to half of the

ion plasma frequency; the number of time steps in a full ion

plasma frequency oscillation period - 267, while the repetition

rate from the plot in Fig. 5-15 is approximately 130. The

bunching of ions, as is shown in Fig. 5-14, is also correlated

with the same number of time steps.

The expression for thrust derived in Eq. 4-81 does not take

into account the contributions of the ions being pulled back;

this causes an additional drag on the ship, and thrust deter-

ioration should be worse than indicated by the curve for

Ne/N i _ 0 in Fig. 5-15.

Figure 5-16 shows the variations in the ship potential for

the three cases of emission as a function of time. As mentioned

in Section V.C, the ship potential is positive for normal condi-

tions of operation. The ship potential is most positive for the

case of highest electron emission, although the fluctuations in

ship potential for the case of Ne/N i _ 2 are smaller than those

for the case of Ne/N i -- 4. Again, as mentioned in Section V.C,

the evaluation of ship potential at later time steps is question-

able. For the case of Ne/N i _- O, the ship potential becomes

more and more negative at a decreasing rate, since less and less

ions are ejected and the ship builds up negative charge.

_<. Variation with Electron Emitter Temperature

In the earlier part of the computer experiments, the

_'e_t _f the ...._*_ of e_ el_e_n emi*_ e__e_

was studied. Two sets of runs, namely 1D and 1E for
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e_o/kT - 40 and i00, respectively, were made. These cases corres-

pond to electron velocities less than ion exit velocities and are

studied to determine the effect of various electron emitting sur-

faces. The input parameters and calculated constants are given

in Table 5-3.

Table 5-3

Run M _ e_o Ni N _D
No. m L kT A--x

1D 16 1 40 3 60 1.91

!E 16 1 100 3 60 1.2

-2
xlO

q
-4

10

2.96

2.96

vR

0.72

o.456

C

_o

-1.5625

- 1.5 625

Figures 5-17 and 5-18 show typical electron trajectories for

the two cases in x-y space. It is clear that, for the case of

lower electron emltter temperature, the electrons travel

shorter distances in the direction of the accel grid, and the

fluctuations of the electrons in the x-y space are also

reduced. For both these cases Ne/Ni = _ as In the cases

mentioned in Table 5-1. Again, as mentioned in Section _ C,

the electron clouds follow patterns like those for the ions in

the two respective cases. The ion trajectories are simllar

to those shown for the cases mentioned in Section V C. Typical

electron trajectories (x versus t) are shown in Fig. 5-19

for the case of e_o/kT = 40. It is interesting to note that,

u_cause of the reduction in _-_ ±_al _±_u_-_ velocities,

tl_ere are a small number of electrons moving ahead of the

neam; consequently, the number of reflections of electrons
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f'rom free space is reduced. The ultimate electron velocities

are very close to that of the ion exit velocity, even though

the average value of the initial electron velocity is smaller

than the ion exit velocity. In other words, electrons picked

up energy in thls case, while electrons lost energy in the

cases discussed in Section _ C. Because of the heavy mass

of ions, the change in ion energy is not noticed. In both

cases there is some degree of thermalization. The variations

in thrust and ship potential are slmilar to those for the

case of M/m = 144 (discussed in Section _ C). This indicates

that the performance of the ion engine is not affected as

long as there is a sufficiently large number of electrons

being emitted from either the cold or hot emitter.

F. Variation with Normalized Charge

From the knowledge about the normalization of the para-

meters and from the comparison study discussed in Section _ C,

it is possible to extrapolate the results for any set of para-

meters. However, one more parameter which is of practical

significance is the normalized charge discussed in Section I_ D.

An additional degree of freedom on the value of the normalized

charge makes it convenient to extrapolate the results in a

so_newhat flexible manner. As mentioned in Section V.B,a vari-

.
ation in the value of q , the normalized charge per unit length,

may also be associated with a variation in the value of the
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unit time interval (see Eq. 4-11). Slnce the value of q

used in the mass comparison study was already high, it was

considered appropriate to reduce it and then study the

electron-ion mixing for the lower mass ratio. All the con-

ditions were maintained identical as those for Run 3B (see

Table 5-1), except that _/L was decreased to 1, which reduced

the value of At by a factor of 2.25 and the value of q by 81/16.

This run is referred to as Run 3A. Typical ion trajectories (y

vs. x) are shown in Flg. 5-20. The ion-beam spread is reduced

.
as a result of the decrease in q ; and the value of _1/_2 ,

according to the criterion given in Fig. 5-4, is equal to 3.

In this case the comparison in ion beam spread is for dif-

.
ferent values of q , but not for different values of ion mass

as used in connection with Fig. 5-4. This indicates that

the space-charge neutralization seems to be more pronounced for

large values of q ; this is true because, without any space-

charge neutralization, the ion-beam spread is proportional

to (q*)2 for the same value of M. The value of _1/_2 should

.
then be about 25. Slnce the value of q for an electron is

also changed perhaps a good comparlson mlght be based on the

difference between the numbers of the two types of particles in

the vicinity of the decel grid; thls ls somewhat d_fficult

to investigate. Sufficient data is not available to make any

final conclusions along these lines.
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Figure 5-21 shows lhe typical electron trajectories (x

,
versus t) for the case of reduced value of q The space-

charge forces on electrons (particularly near the decel grid)

are reduced, and no electron moves back to the accel grid.

Otherwise, the general patterns of the trajectories seem to

be similar in the two cases. Again as mentioned in Section V. C,

the whole decel grid becomes a virtual emitter, and the electron

.
cloud follows the ion cloud. For the case of reduced q the

fluctuations in thrust and ship potential are smoothed out

and the ship potential is also closer to zero.

d. Extrapolation of Results to Practical Cases

For studying the variation of electron-ion mixing with

mass ratio, the value of the parameter e_o/kT was selected so

that

e_o M

k----#= 0.i _ (5-5)

Substituting 2300°K for T, the value of _o for cesium ion is

approximately 4.6 kilovolts, and the corresponding current

density J, using Child's law, is approximately equal to 13.5

ma/cm 2 for L = 1/3 cm. For the case of different ions the

values of _o and J would be changed accordingly. For example,

_o _ 35 volts for hydrogen. If the same values of _pAt as used

for M/m = 64, 144 and 256 is used for cesuim, the value of
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I/L is given by

(I/L) cs = 3.75 x 10 -2 (5-6)

Thus for L = 1/3 cm, I is approximately 5 mils. The cor-

responding voltage between the two grids (using _i/_o = 0.4) is

equal to 1.84 kilovolts for cesium; with 400 volts/mil as

breakdown voltage limit, there does not seem to be any problem.

The corresponding value of the electron plasma frequency is

approximately I Gc.

For the results given in this section, the distance be-

tween the two grids was kept constant (I=8 mesh units), thus,

it is appropriate to extrapolate the results to hydrogen and

cesium ions for appropriate values of L. For example, using

the relations described in Section IV, and keeping fp = I Gc

in all cases, the values of L is approximately 11 mils and 125

mils for hydrogen and cesium ions, respectively. The correspond-

ing value for I is then about 5 mils. It turns out that one

can extrapolate the results given in this section to ions of

any mass ratio by keeping I constant. The corresponding

current density _n each case is about 13.5 ma/cm 2 when the

value of L is changed appropriately; however in some cases,

a change in the value of L may also be desirable to increase

the current density that can be obtained.

The corresponding angles of dispersion for the cases of

hydrogen and cesium ions as extrapolated from the studies of
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X/m = 6_I, IZ_4 and 256 for the case of the closed grids (no

aperture consideration) appears to be very small. The com-

parison of thrust and ship potential variations for the three

different cases seems to indicate that the simulation of the

actual case (cesium ion) would show extremely small fluctua-

tions in thrust and ship potential. The ship potential extrap-

olated for the case of cesium ions being close_' to zero seems

_o indicate a higher degree of space-charge neutralization.

H. Correlation Between 0ne-Dimensional and Two-Dimensional

Results

Because of the two-dimensional nature of the problem, it

has not been possible to track the charged particles beyond

the decel grid to distances as great as in the one-dimensional

simulation. The reduction in the number of binary bits for

storing x- and y-coordinates by using packing technique has

limited the study of electron-ion mixing mechanism to small

values of ion mass ratio. Nevertheless, a study based upon

variation of mass has led to an extrapolation of the space-

charge neutralization mechanism for large values of mass ratio.

Within these limits it has been possible to correlate the re-

sults of the one- and two-dimensional formulations. In general

(tais is also based upon the comparison of the results of the

two cases where _/m = 144), it is found that, for the same

transient duration, the fluctuations in the ship potential

_nd thrust are reduced for the case of the two-dimensional

Lna!ysis. The first emitted ions are accelerated, and electrons
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with fast velocities swing back and forth in both cases. It

is not necessary to generate as many electrons as required

in the one-dimensional case; in fact, in one run, one-fourth of

the electron emission used in the one-dimensional case was found

to give adequate space-charge neutralization. It may be men-

tioned here that the results from the two-dimensional analysis

discussed in this section and the initial results obtained for

the case of an aperture seem to indicate that even a lower

electron emission may be sufficient for the purpose of space-

charge neutralization.

it has also been possible to correlate some of the results

described in Section V with the theory of the shelf development

derived for the one-dimensional case in Section III. It has been

mentioned earlier that even though electrons are emitted from a

narrow strip, the whole decel grid becomes a virtual electron

emitter. The electrons travel a finite distance towards the ac-

cel grid and are reflected back due to the dc voltage across the

two grids. However, it appears, as noticed from the potential pro-

file shown in Fig. 3-25, that there is a zero voltage gradient

region formed in the neighborhood of the decel grid plane. The

electrons moving out of this region towards the accel grid

experience a strong accelerating force which moves these

electrons away from the accel grid. The dark region shown
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in the electron (y vs. x) trajectory plots give an indication

of the shelf development as described in Section III. The

comparison of the theoretical results and the experimental

results (obtained from the trajectory plots) is given in

Table 5-4.

Table 9-4

Run No.

2E

3B

Comparison of Shelf Results

L' (Theoretical)

6.45

4.3

L' (Experimental)

6

5

L' is the distance of the shelf from the accel grid in terms

of mesh units. (See Fig. 3-25.) Since L'/L-- 1.2i (Eq. 3-31)

for the shelf formation, it is necessary that _/L __ 1.21; this

is why this comparison has been made only for two values of

mass ratio. The comparison between the theoretical and exper-

imental results is reasonably good on a first order basis.

It may be mentioned here again that the theoretical results

are based upon the one-dimensional formulation, while the

experimental results referred to are from the two-dimensional

formulation. This seems to be logical, because the potential
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distribution in the vicinity of the grids is very close to

that of a one-dimensional case. This makes it desirable to

study the effects of the apertures in order to explore the

advantages of the two-dimenslonal formulation.
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VI. TWO-DIMENSIONAL ELECTRON-ION MIXING WITH AN APERTURE
AT TH_ DECEL GRID PLANE

A. Introduction

The formulation of the two-dimensional electron-ion

mixing problem with transparent accel and dece] _rids is

described in Section IV, and the results are given in

Section V. In this case it is assumed that there are

no transverse variations of potential along the two grids,

and that the grids are transparent in order not to affect

the motion of the charged particles. Actually, these

assumptions are not valid, because the effect of the

aperture can be considerable, particularly when the size

of the aperture is comparable to the distance between the

two grids. The main problem in the case of an open _rid

is the solution of Poisson's equation with appropriate

simulation of the boundary conditions. There are also

some minor modifications in the formulas used for field

evaluation.

In general, solution of Poisson's equation with

arbitrary boundary conditions is quite time-consumin_;

most of the present-day methods involve several iterations

until s reasonable convergence is obtained. In our problem,

the simulation of arbitrary boundary conditions has been

achieved by modifyinc the Fourier analysis and marchin_

met_o_ _ise_ i_ _olving for the potential distribution.
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The modification consists of solving for potential dis-

tribution without any boundary constraints, then adding

appropriate compensation charges at the required locations

(specified by boundary constraints), and solving again for

the potential distribution. The total computer time need-

ed to obtain the correct potential distribution with

boundary constraints is far less than twice that needed

for'the case with no such boundary constraints. The com-

puter times are approximately the same when these boundary

constraints are close to the accel grid. For boundary

constraints near the plane x=200, where space conditions

are simulated, the total computer time for obtaining the

correct potential distribution is increased (to two times

that with no boundary constraints); in that case it may be

necessary to adopt a different technique and/or modify our

present approach for solving Poisson's equation. This is

discussed in detail in the next sections.

B. Evaluation of Capacitance Matrix

It was mentioned in the last section that, in order

to obtain a correct potential distribution, it is necessary

to add appropriate values of compensating charges at _oca-

tions specified by boundary constraints. This procedure

simulates the effects of the boundary constraints. Thus,

the correct potential distribution is obtained as a result

of superposition of the actual charge (electrons and ions)
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distribution and the compensating charges mentioned

above. The values of the compensating charges are ob-

tained by multiplying the capacitance matrix (discussed

below) and the uncorrected potential matrix. The un-

corrected potential matrix is given by potentials at

the locations of the boundary constraints when these

potentials are evaluated without any consideration of

the boundary constraints.

For the present case it is assumed that the accel

grid is still transparent, i.e., there are no transverse

variations of potential along the decel grid. The ions

are injected with zero transverse velocity, although the

effect of the aperture can be simulated by considering

appropriate velocity distribution for the x- and y-com-

ponents, the ions being injected at various points along

the aperture. Only the electron emitter (which constitutes

a small part of the decel grid plane) is held at a constant

potential, while the potentials at other points along the

decel grid plane can vary according to the actual space-

charge distribution. The configuration of the electron

emitter is shown in Fig. 6.1. In order to take into

account the effect of the boundary constraints at the

electron emitter, it becomes necessary to compute the

potential as a result of an arbitrary charge located at

L_j one or a comblnatmon of _ _+o...... _...... This po*_+_7
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is evaluated at the locations of boundary constraints

and with zero voltage at the accel grid. The relation-

ship between the voltages and charges at these points

gives the inverse capacitance matrix, which is a function

of the _eometrical configuration only. The inverse of the

_nverse capacitance matrix (capacitance matrix) is given by:

q3

Cll C12 CI 3 Cln k

c21 c22 c23 C2n

=/°.
On3 °,-,,-,

v 3

t,vni

The diagonal and off diagonal terms of this matrix are

referred to as the self- and cross-capacitances of the

various mesh points in consideration. As mentioned above,

the capacitance matrix is obtained by inverting an n by n

matrix. The maximum value of n is restricted by the amount

of computer time required to invert the matrix. In gen-

eral, the diagonal terms are dominant, and in case of

large values of n, approximations may be made to take

into account only a few terms. This will reduce the com-

puter time in inverting a matrix. In the present case,
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n=5; the matrix is inverted only once, and the matrix

coefficients are stored on tape. Thus, the computer

time involved in inverting a matrix is not of great

concern, and the potential distribution obtained is

quite accurate.

C. Solution of Poisson's Difference Equation with

Boundary Constraints

The procedure for solving Poisson's difference

equation with boundary constraints (aperture at the de-

cel grid plane) consists of the Fourier analysis and

marching method; Gauss's reduction method is not used.

However, there is an additional marching back and forth

from the decel grid plane to the accel grid, as discussed

below. The algorithm for obtaining the correct potential

distribution from the charge distribution is shown in

Fig. 6.2, and a schematic of marching process at an

arbitrary time is shown in Fig. 6.3. For the case of

the transparent grid, March 2 and March 3 are not included,

while the end of March I and the beginning of March 4 occur

at the decel grid and not at the accel grid. With the actual

charge distribution, the potential distribution (without

any boundary constraint) is obtained at the decel grid

plane after the March 2 process (the accel grid being

held at a constant potential with respect to the electron

emitter as before). The values of the compensating charges

are obtained by multiplying the capacitance matrix with

the potential matrix (potentials at the locations of the
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ALGORITHM

i .

2.

°

°

7.

.

9.

Calculate charge harmonics.

Starting from Ima x, march to accel grid cal-

culating _'s.

March to decel grid calculating potential

harmo ni cs.

Calculate potentials along the decel grid.

Calculate compensating charges and add to the

existing charges at locations of boundary

constraints.

Calculate charge harmonics along decel grid.

Starting from decel grid, march to accel grid

modifying the previous values of _'s.

Starting from accel grid, march to I
max"

Calculate correct potential distribution.

AN ALGORITHM FOR OBTAINING POTENTIAL

DISTRIBUTION FROM THE CHARGE DISTRIBUTION

Fig. 6-2

175



/
Accel grid

,/
I

I
I
I

I
I

Decel plane

March i

March 2

March

I

-I

I

I
I

I
I
I

I

March
v

Imax

I
max

A SCHEMATIC OF MARCHING PROCESS

Fig. 6-3
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electron emitter), and added at the appropriate locations.

Starting with the previous values of _'s at column next

to the decel grid column, new values of _'s are obtain-

ed by taking into account the actual charge distribution

and the compensating charges. The marching process is

then completed to obtain the correct potential distribu-

tion. The updating of the charged particles is carried

on as in the previous case.

D. Thrust Evaluation

The expression for the normalized thrust given by

Eq. 4-81 takes into account contributions from both the

accel and decel grids. For the case of an open grid there

is a conducting plane (emitter) over a relatively short

length along the decel grid plane, which makes it necessary

to modify the expression for the normalized thrust. Pro-

ceeding in a manner similar to that in the closed-grid

case, and modifying the contributions from the decel grid

plane, the expression for the normalized thrust is given by

T 2Av

j=1 ( pat) 

2 2

, (6-9)
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where suffixes i, 2, and 3 refer to electric fields El,

E2, and E3 as shown in Fig. 4-4, and n is equal to the

len_:th of the electron emitter in terms of Ax's (the

results given in next section are for n=5). The con-

tributions from the 1st and 25th rectangles are to be

divided by 2, since only half end rectangles are con-

sidered.

E. Results

A test run, namely 5A, was formulated for the pro-

gram with an aperture at the decel grid plane, and the

parameters selected for this case are the same as those

for the run 2E, discussed in Section V.C., except that

Ne/Ni=3 is selected in this case. The absorption area

of the decel plane, in this case, is reduced, and thus

the electron emission required for adequate neutralization

is also reduced. The variation of the normalized thrust

(Eq. 6-2) and ship potential (discussed in Section IV. E.4)

as a function of time are shown in Figs. 6-4 and 6-5, re-

spectively. The ship potential plot is compared with

the case of closed grid and is found to be more steady

and close to zero for the case of aperture. The fluctua-

tions in thrust and ship potential do not seem to be

detrimental to the ion engine performance. The thrust

reaches its asymptotic value (less than unity) earlier

than that for the case of the closed grid; this is
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attributed to the fact that the average value of E 2

(see Fig. 4-4) is closer to zero than that for the case

of the closed grid. As explained earlier, this reduces

the value of the thrust. There is no appreciable differ-

ence in thrust in the two cases.

The equipotential plots for this case at time inter-

vals T/at=200 and 600 are shown in Figs. 6-6 and 6-73 re-

spectively. Adequate space-charge neutralization seems

to occur in the vicinity of the electron emitter. Even

though there may be more electrons in the neighborhood of

the electron emitterj the presence of ions seems to affect

the potential in its vicinity. The resolution in comput-

ing the voltage distribution is of the order of one mesh

unit. Consequently, it is difficult to estimate the exact

potential distribution in the region near the electron

emitter. It may be noticed that all the electrons will

be reflected towards the ion beam because the electrons

moving away from the ion beam encounter relatively high

potential barriers. This is compared with the equipoten-

tial plots for the case of the closed grid at the same

time intervals (T/_t=200 and 600) in Figs. 6-8 and 6-9.

The accel grid is at -1.024V (normalized potential) with

respect to the decel system in all the cases; the number

1.024 results because of the values of the parameters

used in Eq. 4-9. It is quite clear from these plots why

the complete decel grid (for the idealized case) becomes
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eventually a virtual emitter, even though electrons are

emitted from a narrow strip. Figure 6-9 indicates there

are more electrons in space, and the region near the de-

cel grid is adequately neutralized; thus, only fast energy

electrons will be able to go into space (as compared to

those in the case of a closed grid). The effect of the

aperture on the potential distribution is quite clear

from the plots shown in Fig. 6-10, which represents the

condition after the tenth time interval, when the number

of particles is relatively small. In general, the poten-

tial distribution varies from one time step to another

time step.

Figure 6-11 shows the typical trajectories of elec-

trons in the x-y domain. The remarkable difference be-

tween the electron trajectories for the two cases - namely,

without aperture and with aperture - may easily be noticed

by comparing Figs. 5-6, 5-7 and 6-11. Because of the

different potential distribution shown in Figs. 6_6 and

6-7 (when compared with that given in Figs. 6-8 and 6-9),

for the case of an open grid only high energy electrons

would be able to move upward_ hence, most of the electrons

are directed toward the ion beam. This indicates that the

effect of the aperture is helpful in space-charge neutral-

ization. Typical ion trajectories (x-y domain) are shown

in Fig. 6-12. A comparison of trajectory plots
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given in Figs. 5-? and 6-12 indicates that, because of

increased space-charge neutralization for the case of

an open grid, the ion-beam spread has been reduced. As

mentioned in Section V, the electrons follow ions very

closely and move into the ion beam with fluctuating

space-charge fields.
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VII. CONCLUSIONSAND SUGGESTIONS FOR FURTHER WORK

A. Conclusions

This report has described°the formulations and re-

sults of the analysis of the electron-ion mixing mechan-

ism for the one- and two-dimenslonal models, as applied

to ion-beam engines. A study based upon several combin-

ations of the various parameters, such as ion-electron

mass ratio, electron emission, ion emission, etc., has

thrown a considerable light on the space-charge neutral-

ization mechanism desired for ion-beam engines.

For the one-dimensional case, electrons and ions are

used as sheet charges; genuine space conditions are im-

posed on the advancing head of the beam. The space-charge

fields are evaluated by using Green's function. Time se-

quences of plots for ship potential are described. In

general, it is found that there are more electrons needed

for space-charge neutralization purposes as compared to

those needed in the two-dimensional case, and a deficiency

in electron emission leads to instability. A sufficient

number of particles has been considered, and these particles

were allowed to move under the existing space-charge forces

to distances limited by the computer memory; in some cases

distances as high as 100 intergrid spacings were consid-

ered. The fluctuations in thrust and ship potential in

some cases build up. Primarily, this was traced due to
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lack of electrons. It may be mentioned here that the

corresponding fluctuations in the one-dimensional case

are greater than those for the two-dimensional case,

even for the same transient durations; this may be due

to the inferiority of the one-dimensional formulation

as compared to the two-dimensional formulation. Needless

to say, the two-dimensional model analyzed in detail is

not as close to the practical configuration because of

the closed grid (no aperture) assumption.

In the two-dimensional formulation, a periodicity

in the transverse direction is assumed. A symmetry across

the center line of each plane makes it convenient to study

the electron-ion mixing with fairly good resolution. The

space configuration is divided into 200 x 24 rectangles.

(This is limited by computer storage.) An assumption that

the beam beyond 200th rectangle is completely neutralized

makes it convenient to simulate the space conditions appro-

priately and to study the transient behavior for a long

time. The potential distribution as a result of the

charge distribution and the dc voltage across the accel

and decel grids has been solved by using the Fourier

analysis and marching method; this technique seems to be

extremely fast for solving Poisson's equation as compared

to other existing methods.
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Even though electrons are emitted from a narrow

strip, the whole decel grid for the closed grid case

becomes a virtual emitter, which has been explained by

the potential distribution in the neighborhood of the

decel grid. It is found that the fast electrons exper-

ience more fluctuations in the transverse direction.

The electrons mix into the ion beam with fluctuating

fields; these fields admit electrons of the required

velocity and in approximately the right number. However,

it is necessary to have sufficient electrons, because a

deficiency of electrons does cause turning back of ions,

which leads to thrust deterioration, so that the ship

becomes negatively charged. In general, the ship poten-

tial is positive, because there are usually more electrons

leaving the system during the transient period, although,

under equilibrium conditions, the number of electrons and

ions leaving the system should be the same.

Because of the packing technique, i.e., storing the

x- and y-coordinates of a particle in a single computer

word location, the study of electron-ion mixing has been

limited to rather smaller values of ion mass ratio. A

comparison study of the electron-ion mixing mechanism has

enabled us to extrapolate the results to the case of prac-

tical values of ion mass ratio. There is beam-spreading

..... 7_ of _ _°' o_^T__-cha_o-, _^T_ is partially
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neutralized by electrons. It is found that the ion

beam spread is inversely proportional to the ion mass

ratio. The reduction of further spreading of the ion

beam seems to indicate that there is adequate space-

charge neutralization in the vicinity of the decel grid.

An extrapolation of this study to the practical

values of ion mass ratio seems to indicate that, for

hydrogen and cesium ions, the angle of beam dispersion

is very small, which will not cause any thrust deterior-

ations. By keeping the distance between the two grids

constant (8 units in this case), it is possible to ex-

trapolate the results to the case of arbitrary ion mass

ratio while keeping some of the pertinant parameters,

such as plasma frequency, Debye length, current density,

etc., identical in all cases_ this ability is due to the

fact that the formulation is normalized.

In general, the fluctuations in the ship potential

and thrust are smaller than those found in the one-dimen-

sional case for the same transient duration. While the

fluctuation_ in the ship potential and thrust are caused

by excess number of electrons which move back and forth,

reduction in thrust is caused by ion beam spread. A re-

duction in electron emission does smooth out these fluct-

uations, but thrust is slightly decreased. It is not

clear as yet what the long beam simulation would indicate
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about the performance of the ion engine. The electron

emission needed for adequate neutralization also seems

to be less for the two-dimensional case than for the one-

dimensional case.

The two-dimensional formulation considered here is

limited in the sense that, because of the assumption of

the closed grid, the voltage distribution in the vicinity

of the decel grid is approximately the same as in the case

of the one-dimensional configuration. The results of the shelf

development based upon one-dimensional formulation are in

good agreement with the results obtained from the two-

dimensional formulation.

The case of an aperture at the decel grid is simu-

lated by modifying the marching method and using a charge

compensation technique. The equipotentials for this case

are considerably altered, and the electrons seem to be

drawn towards the ion beam more than they are in the closed

grid case. The plots for the electrons and ions traject-

ories have not been made during this period, because funds

had been exhausted. The tape with the trajectories stored

on it will be run upon the anticipated renewal of the con-

tract. The fluctuations in the ship potential and thrust

seem to be of the same order of magnitude as in the case

of the closed grid.
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B. Suggestion for Future Work

The results of the one-dimensional and two-dimensional

formulations for analyzing the electron-ion mixing mechanism

described in this report have led to a very good understand-

ing of the space-charge neutralization needed in the ion-

beam engines. The two-dimensional formulation considered

here is much closer than the one-dimensional formulation,

to the practical configurations, and some interesting re-

sults on ion beam-spreading have been obtained. However,

because of the closed grid assumption, the potential distrib-

ution in the vicinity of the decel grid is very nearly the

same as that in the one-dimensional case; in fact, the

correlation of the results (electron trajectories in the

x-y domain) with the theory of the shelf development based

on one-dimensional formulation also seems to indicate this.

This makes it rather important to study the aperture, simu-

lating more closely the actual case. It is felt that

the results would differ considerably from the results ob-

tained so far. Thus, an optimization of both the shape

and position" of the electron emitter would be desirable for

further investigation. Along with the simulation of the

aperture at the decel grid, it is also desirable to simulate

the aperture at the accel grid. This would then imply new

boundary conditions at the accel grid, both in terms of the

potential distribution and velocity component's distribution

for the ions injected across the accel grid.

The studies to date have indicated that there is an

adequate space-charge neutralization in the vicinity of the

decel grid, although the bouncing off of the electrons
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from the front of the beam does seem to indicate that

complete thermalization has not occurred. Variations

in electron emission and in initial electron velocity

would, of course, lead to different results, but it

would be then desirable to investigate the degree of

thermalization and to determine electron and ion temp-

eratures in order to obtain a greater understanding of

the space-charge neutralization mechanism. It appears

that the thermalization studies could be made both for

the one- and two-dimensional cases within the limitation

of computer storage. The potential profile in space

would also augment the understanding of the space-charge

neutralization and thermalization mechanisms.

Due to computer limitations it has not been possible

to simulate long beams and to study the fast electrons

moving ahead of the beam; these electrons eventually

bounce back from the free space and move back into the

region under consideration. A simulation based upon this

reflection would enable us to extend our transient study

for longer time intervals. This would enable us to ex-

plore any instability. A consideration of smaller values

of mass ratio is also helpful in the early diagnosis of

ion instability.

One alternate way to simulate a long beam would be

to reduce the number of rectangles in the transverse
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direction: for example, from 48 to 24 in a period.

This would enable the tracing of the particles to a

larger number of rectangles along the x-axls. This

would then require an additional binary bit for spec-

ifying the integral part of the x-coordinate, which

might demand reduction in the decimal accuracy for the

x-coordinate. Some considerations towards a variable

spacing along the x-axis would also be helpful in

achieving long beam simulation.

The study of rf impedance across the two grids was

initiated, but has not been completed. (A brief mention

of this work is made in the 5th quarterly reporb._ It

is expected that a consideration of the rf impedance

across the two grids would lead to results which are

different from those obtained to date, because the volt-

age is induced on the circuit, and this alters the tra-

Jectories considerably. It seems that the effect of the

rf impedance would be to reduce the instability mechanism.

Furthermore, a case of density or velocity modulation

across the two decel grids would also be helpful in in-

stability diagnosis.

15. R.P. Wadhwa,"Analysis of Electron-lon Mixing in lon
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